Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)` Xét `\triangle ABC` vuông tại `A` có: `\hat{B}+\hat{C}=90^o`
Xét `\triangle ABH` vuông tại `H` có: `\hat{B}+\hat{A_1}=90^o`
`=>\hat{C}=\hat{A_1}`
Xét `\triangle ABC` và `\triangle HBA` có:
`{:(\hat{C}=\hat{A_1}),(\hat{B}\text{ là góc chung}):}}=>\triangle ABC` $\backsim$ `\triangle HBA` (g-g)
`b)` Ta có: `BC=HB+HC=4+9=13(cm)`
Xét `\triangle ABC` vuông tại `A` có: `AH` là đường cao
`@AH=\sqrt{BH.HC}=6 (cm)`
`@AB=\sqrt{BH.BC}=2\sqrt{13}(cm)`
Ta có: `\hat{DEA}=\hat{ADH}=\hat{AEH}=90^o`
`=>` Tứ giác `AEHD` là hcn `=>DE=AH=6(cm)`
`c)` Xét `\triangle AHB` vuông tại `H` có: `HD \bot AB=>AH^2=AD.AB`
Xét `\triangle AHC` vuông tại `H` có: `HE \bot AC=>AH^2=AE.AC`
`=>AD.AB=AE.AC`
a) xét tam giác ( k biết ghi kí hiệu trên này :v) ABC và tam giác HBA có
góc B chung ( kí hiệu góc nhé :D)
góc A = góc BHA = 90 độ ( gt) kí hiệu nhé
Nên tam giác ABC ~ tam giác HBA (g .g) mình ms làm dc câu A thôi :v
TỰ VẼ HÌNH NHA
a) xét tám giác ABC và tam giác HBA
góc A= góc H (=90 độ)
góc A :chung
=> tam giác ABC ~ tam giác HBA (g-g)
a. Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{B}\left(chung\right)\)
\(\widehat{BHA}=\widehat{BAC}\left(=90^0\right)\)
Do đó: \(\Delta HBA\infty\Delta ABC\left(g-g\right)\)
b. Vì \(\Delta ABC\) vuông tại A
=> \(AB^2+AC^2=BC^2\)
hay \(6^2+8^2=BC^2\)
=> \(\sqrt{BC}=\sqrt{100}\)
=> BC = 10cm
Vì \(\Delta HBA\infty\Delta ABC\left(cmt\right)\)
=> \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\)
hay \(\dfrac{AH}{8}=\dfrac{6}{10}\)
=> AH = 4,8 cm
Vì \(\Delta ABH\) vuông tại H
=> \(BH^2+AH^2=AB^2\)
hay \(BH^2=6-4,8\)
=> BH = 1,2 cm
c. Xét \(\Delta ABC\) và \(\Delta HAC\) có:
\(\widehat{BAC}=\widehat{AHC}\left(=90^0\right)\)
\(\widehat{C}\left(chung\right)\)
Do đó: \(\Delta ABC\infty\Delta HAC\left(g-g\right)\)
Mà \(\Delta HBA\infty\Delta ABC\left(cmt\right)\)
=> \(\Delta HAC\infty\Delta HBA\)
=> \(\dfrac{AH}{HB}=\dfrac{HC}{AH}\)
hay \(AH^2=HB.HC\)
a: XétΔAHB vuông tại H có HM là đường cao
nên BM*BA=BH^2; AM*AB=AH^2; HM*AB=HA*HB
Xét ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2; CN*CA=CH^2; HA*HC=HN*CA
CN*BM*BC
=BH^2/BA*CH^2/CA*BC
\(=\dfrac{\left(BH\cdot CH\right)^2}{BA\cdot CA}\cdot BC\)
=AH^4/AH=AH^3
AM*AB=AH^2
AN*AC=AH^2
=>AM*AB=AN*AC(Cái này mới đúng nè bạn, còn cái AM*AC=AN*AB là sai đề rồi á)
b: AM*AN
=AH^2/AB*AH^2/AC
=AH^4/AB*AC
\(=\dfrac{AH^4}{AH\cdot BC}=\dfrac{AH^3}{BC}\)
c: Sửa đề: AB^3/AC^3=BM/CN
\(\dfrac{BM}{CN}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
a: Xét ΔABC vuông tại A và ΔHBA vuôngtại H có
góc B chung
Do đó; ΔABC đồng dạng với ΔHBA
b: Xét ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)