K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuôngtại H có

góc B chung

Do đó; ΔABC đồng dạng với ΔHBA

b: Xét ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HK là đường cao

nên \(AK\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

8 tháng 5 2023

`a)` Xét `\triangle ABC` vuông tại `A` có: `\hat{B}+\hat{C}=90^o`

      Xét `\triangle ABH` vuông tại `H` có: `\hat{B}+\hat{A_1}=90^o`

    `=>\hat{C}=\hat{A_1}`

Xét `\triangle ABC` và `\triangle HBA` có:

    `{:(\hat{C}=\hat{A_1}),(\hat{B}\text{ là góc chung}):}}=>\triangle ABC` $\backsim$ `\triangle HBA` (g-g)

`b)` Ta có: `BC=HB+HC=4+9=13(cm)`

Xét `\triangle ABC` vuông tại `A` có: `AH` là đường cao

    `@AH=\sqrt{BH.HC}=6 (cm)`

    `@AB=\sqrt{BH.BC}=2\sqrt{13}(cm)`

Ta có: `\hat{DEA}=\hat{ADH}=\hat{AEH}=90^o`

   `=>` Tứ giác `AEHD` là hcn `=>DE=AH=6(cm)`

`c)` Xét `\triangle AHB` vuông tại `H` có: `HD \bot AB=>AH^2=AD.AB`

      Xét `\triangle AHC` vuông tại `H` có: `HE \bot AC=>AH^2=AE.AC`

   `=>AD.AB=AE.AC`

loading...

8 tháng 5 2023

Cảm ơn anh nhiều yeu

8 tháng 4 2022

8 tháng 4 2022

ủa lớp 5 lm lớp 8

12 tháng 5 2016

a) xét tam giác ( k biết ghi kí hiệu trên này :v) ABC và tam giác HBA có 
 góc B chung ( kí hiệu góc nhé :D) 
góc A = góc BHA = 90 độ ( gt) kí hiệu nhé 
Nên tam giác ABC ~ tam giác HBA (g .g) mình ms làm dc câu A thôi :v

 

13 tháng 5 2016

TỰ VẼ HÌNH NHA  

a) xét tám giác ABC và tam giác HBA 

góc A= góc H (=90 độ)

góc A :chung

=> tam giác ABC ~ tam giác HBA (g-g)

 

16 tháng 5 2018

Hỏi đáp Toán

a. Xét \(\Delta HBA\)\(\Delta ABC\) có:

\(\widehat{B}\left(chung\right)\)

\(\widehat{BHA}=\widehat{BAC}\left(=90^0\right)\)

Do đó: \(\Delta HBA\infty\Delta ABC\left(g-g\right)\)

b. Vì \(\Delta ABC\) vuông tại A
=> \(AB^2+AC^2=BC^2\)

hay \(6^2+8^2=BC^2\)

=> \(\sqrt{BC}=\sqrt{100}\)

=> BC = 10cm

\(\Delta HBA\infty\Delta ABC\left(cmt\right)\)

=> \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\)

hay \(\dfrac{AH}{8}=\dfrac{6}{10}\)

=> AH = 4,8 cm

\(\Delta ABH\) vuông tại H

=> \(BH^2+AH^2=AB^2\)

hay \(BH^2=6-4,8\)

=> BH = 1,2 cm

c. Xét \(\Delta ABC\)\(\Delta HAC\) có:

\(\widehat{BAC}=\widehat{AHC}\left(=90^0\right)\)

\(\widehat{C}\left(chung\right)\)

Do đó: \(\Delta ABC\infty\Delta HAC\left(g-g\right)\)

\(\Delta HBA\infty\Delta ABC\left(cmt\right)\)

=> \(\Delta HAC\infty\Delta HBA\)

=> \(\dfrac{AH}{HB}=\dfrac{HC}{AH}\)

hay \(AH^2=HB.HC\)

21 tháng 8 2019

giup mình với mai đi hc rồi

a: XétΔAHB vuông tại H có HM là đường cao

nên BM*BA=BH^2; AM*AB=AH^2; HM*AB=HA*HB

Xét ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2; CN*CA=CH^2; HA*HC=HN*CA

CN*BM*BC

=BH^2/BA*CH^2/CA*BC

\(=\dfrac{\left(BH\cdot CH\right)^2}{BA\cdot CA}\cdot BC\)

=AH^4/AH=AH^3

AM*AB=AH^2

AN*AC=AH^2

=>AM*AB=AN*AC(Cái này mới đúng nè bạn, còn cái AM*AC=AN*AB là sai đề rồi á)

b: AM*AN

=AH^2/AB*AH^2/AC

=AH^4/AB*AC

\(=\dfrac{AH^4}{AH\cdot BC}=\dfrac{AH^3}{BC}\)

c: Sửa đề: AB^3/AC^3=BM/CN

\(\dfrac{BM}{CN}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)

\(=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)