Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét t/g AOB &t/g KOC, ta có:
OC=OB( O là TĐ của BC)
\(\widehat{AOB}\)=\(\widehat{KOC}\)
OA=OK(gt)
=> \(\Delta AOB=\Delta KOC\)(c-g-c)
=> AB= CK(2 cạnh t/ứ)
\(\widehat{BAO}\)=\(\widehat{CKO}\)(2gocs t/ứ)
mà chúng ở vị trí SLT
=>\(AB//Ck\)
Ta có:
\(AB\perp AC\)(\(\Delta ABC\)vuông tại A)
\(AB//CK\)
=> \(AC\perp Ck\)
=> \(\widehat{KCA}=\widehat{BAC}\left(=90^0\right)\)
Xét t/g vuông ABC &t/g vuông CKA, ta có:
AB=CK
AC chung
=> t/g vuông ABC= t/g vuông CKA(2cgv)
Bài làm
~ Tự vẽ hình, đó mik lm = đt nên k vẽ đc hình ~
a) Xét ∆BOA và ∆COK có:
OA = OK ( GT )
GÓC BOA = GÓC COK ( HAI GÓC ĐỐI )
OB = OC ( O LÀ TRUNG ĐIỂN BC )
=> ∆BOA = ∆COK ( c.g.c )
=> AB = KC ( hai cạnh tương ứng )
=> Góc ABC = GÓC KCB ( HAI GÓC TƯƠNG ỨNG )
MÀ hai góc này ở vị trí số le trong.
=> AB // CK
Mà BA | AC
=> CK | AC
Xét ∆ABC và ∆CKA có:
AB = CK ( cmt )
Góc BAC = góc KCA ( đó AB và CK cùng vuông góc với AC )
Cạnh AC chung.
=> ∆ABC = ∆CKA. ( c.g.c )
Bài alfm
Vì tâm giác ABC = tâm giác AKC
=> BC = AK.
Mà AO là trung điểm AK.
=> AO = 1/2 AK
Hay AO = 1/2BC
Ta có :O là trung điểm của BC(gt)
O là trung điểm của AK(OA=OK)
=>ABKC là hình bình hành(dhnb)
Mà góc BAC = 90 độ
=>ABKC là hình chữ nhật (dhnb)
=>AB=CK và góc ACK = 90 độ
Xét tam giác ABC và tam giác CKA có:
AB=CK(cmt)
góc BAC=góc KCA( cùng bằng 90 độ)
AC chung
Vậy tam giác ABC = tam giác CKA(c.g.c)
b)Xét tam giác AHB và tam giác CHA có
góc AHB = góc CHA (=90 độ)
góc BAH =góc ACH(cùng phụ với góc B)
Vậy tam giác AHB đồng dạng tam giác CHA(g.g)
=>\(\dfrac{AB}{AH}=\dfrac{AC}{CH}\)(1)
Ta có AH\(\perp\)CH
ED\(\perp\)CH
=>AH//DE
Xét tam giác ACH có
AH//DE
=>\(\dfrac{AE}{HD}=\dfrac{AC}{CH}\)
=>\(\dfrac{AE}{AH}=\dfrac{AC}{CH}\)(do AH=AD)(2)
Từ(1) và (2) => \(\dfrac{AB}{AH}=\dfrac{AE}{AH}\)
=>AB=AE(đpcm)
Tham khảo: Câu hỏi của Lee Linh