Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/s : Hình vẽ k đc chính xác ! Thông cảm ạ !
a) Ta có : AE = EB
AD = DC
\(\Rightarrow\)ED là đường trung bình của △ABC
\(\Rightarrow\)ED song song và bằng \(\frac{1}{2}\)BC (1)
Lại có : IG = IB
KG = KC
\(\Rightarrow\)IK là đường trung bình của △GBC
\(\Rightarrow\)IK song song và bằng \(\frac{1}{2}\)BC (2)
Từ (1) và (2) suy ra : ED song song và bằng IK
\(\Rightarrow\)Tứ giác DEIK là hình bình hành
Mà EK ⊥ DI
\(\Rightarrow\) Tứ giác DEIK là hình thoi
Có : G là trọng tâm của △ABC
\(\Rightarrow\)GD = \(\frac{1}{3}\)BD
GE = \(\frac{1}{3}\)EC
Vì △ABC cân nên BD = EC
\(\Rightarrow\)\(\frac{1}{3}\)BD = \(\frac{1}{3}\)EC
\(\Rightarrow\)GD = GE
\(\Rightarrow\)2GD = 2GE
\(\Rightarrow\)DI = EK
\(\Rightarrow\)Tứ giác DEIK là hình vuông
b) Ta có :
GE = \(\frac{1}{3}\)CE (Vì G là trọng tâm của △ABC)
\(\Rightarrow\)GE = 4 cm
Vì DEIK là hình vuông
\(\Rightarrow\)△GED vuông cân tại G
Áp dụng định lí Pythagoras vào △GED vuông cân tại G, ta có :
ED2 = GE2 + GD2
\(\Rightarrow\)ED2 = 2GE2
\(\Rightarrow\)ED2 = 2.42
\(\Rightarrow\) ED2 = 32
\(\Rightarrow\)ED = \(\sqrt{32}\)cm
Vậy \(S_{DEIK}=\left(\sqrt{32}\right)^2=32\left(cm^2\right)\)
tam giác ACD có AO=OD(O là giao điểm hai đường chéo)
AM=MD(M là trung điểm AD) suy ra MO là đường trung bình tam giác ACD
=> MO=\(\dfrac{DC}{2}\)=\(\dfrac{16}{2}\)=8 cm
tam giác ACD vuông tại D suy ra AC2= AD2+DC2
AC2= 122+162= 144+256=400
=> AC=\(\sqrt{400}\)=20 cm
tam giác ACD vuông tại D có DO là đường trung tuyến(OB=OD)
suy ra DO= \(\dfrac{AC}{2}\)=\(\dfrac{20}{2}\)=10 cm
tui làm bài 1 thui còn bài còn lại làm biếng
\(a,\) Vì E,D là trung điểm AB,AC nên ED là đường trung bình tam giác ABC
Do đó \(ED//BC;ED=\dfrac{1}{2}BC(1)\)
Vì H,K là trung điểm GB,GC nên HK là đường trung bình tam giác BGC
Do đó \(HK//BC;HK=\dfrac{1}{2}BC(2)\)
Từ \((1)(2)\Rightarrow HK//ED;HK=ED\)
Vậy DEHK là hình bình hành
\(b,\Delta ABC\) cân tại A nên \(AB=AC\Rightarrow \dfrac{1}{2}AB=\dfrac{1}{2}AC\)
\(\Rightarrow AE=EB=AD=DC\)
Ta có \(AB=AC;AE=AD;\widehat{BAC}\) chung
\(\Rightarrow \Delta ADB=\Delta AEC(c.g.c)\\ \Rightarrow BD=EC\)
Lại có G là trọng tâm tam giác ABC nên \(CK=KG=GE=\dfrac{1}{3}CE\)
\(BH=HG=GD=\dfrac{1}{3}BD\)
Do đó \(KG+GE=HG+GD(\dfrac{2}{3}BD=\dfrac{2}{3}CE)\)
\(\Rightarrow EK=HD\)
Vậy DEHK là hình chữ nhật
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
a: Xét ΔABC co AE/AB=AD/AC
nen ED//BC và ED=1/2BC
Xét ΔGBC có GI/GB=GK/GC
nên IK//BC và IK=1/2BC
=>ED//IK và ED=IK
=>EDKI là hình bình hành
mà EK vuông góc vơi DI
nên EDKI là hình thoi
b: Đề sai rồi bạn vì BE=CE thì ΔBAC vuông tại C thì sai rồi nha bạn
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
DO dó: ED là đường trung bình
=>ED//BC và ED=BC/2
Xét ΔGBC có
M,N lần lượt là trug điểm của GB và GC
nênMN là đường trung bình
=>MN//BC và MN=BC/2
Xét ΔGMN có
I là trung điểm của GM
K là trung điểm của GN
Do đó: IK là đường trung bình
=>IK//MN và IK=MN/2
=>IK//ED và IK=BC/4
Xét tứ giác IKDE có DE//IK
nên IKDE là hình thang
Xét ΔACE và ΔABD có
AC=AB
góc A chung
AE=AD
Do đó: ΔACE=ΔABD
Suy ra: CE=BD
Xét ΔEBC và ΔDCB có
EB=DC
EC=BD
BC chung
Do đó: ΔEBC=ΔDCB
Suy ra: góc GBC=góc GCB
hay ΔGBC cân tại G
=>GB=GC
=>GD=GE
GI=1/4GB
GK=1/4GC
mà GB=GC
nên GI=GK
=>ID=EK
=>EDKI là hình thang cân
b: DE=BC/2=5cm
IK=1/4BC=2,5cm
=>DE+IK=7,5cm