Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(u_2=\sqrt{2}\left(2+3\right)-3=5\sqrt{2}-3\)
\(u_3=\sqrt{\dfrac{3}{2}}.5\sqrt{2}-3=5\sqrt{3}-3\)
\(u_4=\sqrt{\dfrac{4}{3}}.5\sqrt{3}-3=5\sqrt{4}-3\)
....
\(\Rightarrow u_n=5\sqrt{n}-3\)
\(\Rightarrow\lim\limits\dfrac{u_n}{\sqrt{n}}=\lim\limits\dfrac{5\sqrt{n}-3}{\sqrt{n}}=5\)
Đặt \(\dfrac{u_n}{n+1}=v_n\)
\(GT\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{u_1}{1+1}=1\\v_{n+1}=\dfrac{1}{4}v_n,\forall n\in N\text{*}\end{matrix}\right.\)
\(\Rightarrow v_n=\dfrac{1}{4}^{n-1},\forall n\in N\text{*}\)
\(\Rightarrow u_n=\left(n+1\right).\dfrac{1}{4}^{n-1},\forall n\in N\text{*}\)
Ta có: \(u_n>2020\) với mọi \(n\in N\text{*}\) \(\left(\text{*}\right)\)
Thật vậy, dễ thấy \(u_1=2021>2020\)
Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\left(k\ge1\right)\)
\(\Rightarrow u_k>2020\)\(\Rightarrow u_{k+1}=\left[1-\dfrac{1}{\left(k+1\right)^2}\right]u_k+\dfrac{2020}{\left(k+1\right)^2}\)
\(>\left[1-\dfrac{1}{\left(k+1\right)^2}\right].2020+\dfrac{2020}{\left(k+1\right)^2}=2020\)
\(\Rightarrow\left(\text{*}\right)\) đúng với \(n=k+1\)
Do đó theo nguyên lý quy nạp ta có đpcm.
Lại có:
\(u_{n+1}-u_n=\dfrac{2020}{\left(n+1\right)^2}-\dfrac{u_n}{\left(n+1\right)^2}< 0\) với mọi \(n\in N\text{*}\)
\(\Rightarrow\left(u_n\right)\) là dãy giảm
\(\left(u_n\right)\) là dãy giảm và bị chặn nên \(\left(u_n\right)\) là dãy hội tụ
Đặt \(limu_n=L\)
\(\Rightarrow\left\{{}\begin{matrix}2020\le L\le2021\\L=\left[1-\dfrac{1}{\left(n+1\right)^2}\right].L+\dfrac{2020}{\left(n+1\right)^2}\end{matrix}\right.\)\(\Rightarrow L=2020\left(tm\right)\)
Vậy \(limu_n=2020\)
Ta có: \(u_n>2020\) với mọi \(n\in N\text{*}\) \(\left(\text{*}\right)\)
Thật vậy, dễ thấy \(u_1=2021>2020\)
Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\left(k\ge1\right)\)
\(\Rightarrow u_k>2020\)\(\Rightarrow u_{k+1}=\left[1-\dfrac{1}{\left(k+1\right)^2}\right]u_k+\dfrac{2020}{\left(k+1\right)^2}\)
\(>\left[1-\dfrac{1}{\left(k+1\right)^2}\right].2020+\dfrac{2020}{\left(k+1\right)^2}=2020\)
\(\Rightarrow\left(\text{*}\right)\) đúng với \(n=k+1\)
Do đó theo nguyên lý quy nạp ta có đpcm.
Lại có:
\(u_{n+1}-u_n=\dfrac{2020}{\left(n+1\right)^2}-\dfrac{u_n}{\left(n+1\right)^2}< 0\) với mọi \(n\in N\text{*}\)
\(\Rightarrow\left(u_n\right)\) là dãy giảm
\(\left(u_n\right)\) là dãy giảm và bị chặn nên \(\left(u_n\right)\) là dãy hội tụ
Đặt \(limu_n=L\)
\(\Rightarrow\left\{{}\begin{matrix}2020\le L\le2021\\L=\left[1-\dfrac{1}{\left(n+1\right)^2}\right].L+\dfrac{2020}{\left(n+1\right)^2}\end{matrix}\right.\)\(\Rightarrow L=2020\left(tm\right)\)
Vậy \(limu_n=2020\)
\(u_{n+1}=\dfrac{u_n}{u_n+1}\Rightarrow\dfrac{1}{u_{n+1}}=\dfrac{1}{u_n}+1\)
Đặt \(\dfrac{1}{u_n}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{u_1}=1\\v_{n+1}=v_n+1\end{matrix}\right.\)
\(\Rightarrow v_n\) là CSC với công sai \(d=1\Rightarrow v_n=v_1+\left(n-1\right).1=n\)
\(\Rightarrow u_n=\dfrac{1}{n}\)
\(\Rightarrow u_n+1=\dfrac{n+1}{n}\)
\(\lim\dfrac{2014\left(\dfrac{2}{1}\right)\left(\dfrac{3}{2}\right)\left(\dfrac{4}{3}\right)...\left(\dfrac{n+1}{n}\right)}{2015n}=\lim\dfrac{2014\left(n+1\right)}{2015n}=\dfrac{2014}{2015}\)
https://hoc24.vn/cau-hoi/giai-phuong-trinhleft3-4sin2xrightleft3-4sin23xright1-2cos10x.4916575957961
Giúp mik bài này với ạ