Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADE có
AB/BD=AC/CE
nên BC//DE
b: Xét ΔDBM vuông tại M và ΔECN vuông tại N có
DB=EC
\(\widehat{DBM}=\widehat{ECN}\)
Do đó: ΔDBM=ΔECN
Suy ra: DM=EN
c: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
DO đó: ΔABM=ΔACN
Suy ra: AM=AN
hay ΔAMN cân tại A
a: BC=10cm
b: Xét ΔCAB vuông tại A và ΔMAN vuông tại A có
AB=AN
AC=AM
Do đó: ΔCAB=ΔMAN
Suy ra: CB=MN
a: Xét ΔMBD vuông tại D và ΔNCE vuông tại E có
DB=CE
\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACB}\right)\)
Do đó: ΔMBD=ΔNCE
Suy ra: DM=EN
Sửa đề: ΔABC vuông cân tại A
a) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=4^2+4^2=32\)
hay \(BC=4\sqrt{2}cm\)
Vậy: \(BC=4\sqrt{2}cm\)
b) Xét ΔADB vuông tại D và ΔADC vuông tại D có
AB=AC(ΔABC vuông cân tại A)
AD chung
Do đó: ΔADB=ΔADC(cạnh huyền-cạnh góc vuông)
Suy ra: DB=DC(hai cạnh tương ứng)
mà D nằm giữa B và C
nên D là trung điểm của BC(đpcm)
c) Ta có: ΔABC vuông cân tại A(gt)
nên \(\widehat{C}=45^0\)(Số đo của một góc ở đáy trong ΔABC vuông cân tại A)
Xét ΔADC vuông tại D có \(\widehat{C}=45^0\)(cmt)
nên ΔADC vuông cân tại D(Dấu hiệu nhận biết tam giác vuông cân)
Suy ra: \(\widehat{CAD}=45^0\)(Số đo của một góc nhọn trong ΔADC vuông cân tại D)
hay \(\widehat{EAD}=45^0\)
Xét ΔEAD vuông tại E có \(\widehat{EAD}=45^0\)(cmt)
nên ΔAED vuông cân tại E(Dấu hiệu nhận biết tam giác vuông cân)
d) Ta có: D là trung điểm của BC(cmt)
nên \(DC=\dfrac{BC}{2}=\dfrac{4\sqrt{2}}{2}=2\sqrt{2}cm\)
mà DC=DA(ΔAED vuông cân tại E)
nên \(AD=2\sqrt{2}cm\)
Vậy: \(AD=2\sqrt{2}cm\)
a: Xét ΔMBD vuông tại D và ΔNCE vuông tại E co
MB=NC
góc MBD=góc NCE
=>ΔMBD=ΔNCE
=>MD=NE
b: Xet tứ giác MDNE có
MD//NE
MD=NE
=>MDNE là hình bình hành
=>MN cắt DE tại trung điểm của mỗi đường
=>I là trung điểm của DE
a: Xét tứ giác ABCE có
D là trung điểm của AC
D là trung điểm của BE
Do đó: ABCE là hình bình hành
Suy ra: AE//BC