Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét ∆ ABC đều
➡️Góc A = góc B = góc C = 60°
Vì MN // AB (gt)
➡️Góc ABC = góc NMC = 60°
Xét ∆ MNC có 2 góc bằng 60°
➡️∆ MNC đều
C/m tương tự ta sẽ có ∆ BMP đều
b, ✳️ Ta có: MN // AB
MP // AC
➡️AN = MP (t/c cặp đoạn chắn)
mà MP = BP (∆ BMP đều)
➡️AN = BP
T/c cặp đoạn chắn: hai đoạn thẳng song song bị chắn bởi hai đoạn thẳng song song thì bằng nhau.
✳️ Vì ∆ ABC đều
➡️O là trọng tâm đồng thời là tâm đg tròn ngoại tiếp
➡️OA = OB
O cx đồng thời là tâm đg tròn nội tiếp
➡️AO là tia phân giác của góc BAC
➡️Góc BAO = góc OAN (1)
✳️ Xét ∆ ABO có OA = OB (cmt)
➡️∆ ABO cân tại O
➡️Góc ABO = góc BAO (2)
Từ (1) và (2) ➡️góc ABO = góc OAN
✳️ Xét ∆ AON và ∆ BOP có:
AN = BP (cmt)
Góc OAN = góc ABO (cmt)
OA = OB (cmt)
➡️∆ AON = ∆ BOP (c.g.c)
c, Vì ∆ AON = ∆ BOP (cmt)
➡️ON = OP (2 cạnh t/ư)
➡️OI là đg trung trực của PN (đpcm)
Mk trình bày đầy đủ rồi đó bn chỉ cần viết vào vở thôi mk nha hok tốt~
a) MP // AC => ^MPB=^CAB; ^PMB=^ACB. Mà ^CAB=^ACB=600
=> ^MPB=^PMB=600 => Tam giác BPM là tam giác đều (đpcm).
b) Tam giác BPM là tam giác đều (cmt) => PM=BP
Ta có: PM//AN; M//AP => PM=AN (Tính chất đoạn chắn)
=> BP=AN.
Tam giác ABC đều và O là trọng tâm nên ta có: ^OBA=^OAC=300 hay ^OBP=^OAN và OB=OA
Xét tam giác OAN và tam giác OBP: BP=AN; OA=OB; ^OAN=^OBP
=> Tam giác OAN= Tam giác OBP (đpcm)
c) Tam giác AIP=Tam giác MIN (g.c.g) => IP=IN hay I là trung điểm của NP
Tam giác OAN=Tam giác OBP (cmt) => ON=OP => O nằm trên trung trực của NP (1)
HP=HN => H nằm trên trung trực của NP (2)
Từ (1) và (2) kết hợp với I là trung điểm của NP => H;I;O thẳng hàng (đpcm).
Câu 2:
a: ΔDEF vuông tại E
=>\(\widehat{EDF}+\widehat{EFD}=90^0\)
=>\(\widehat{EFD}+30^0=90^0\)
=>\(\widehat{EFD}=60^0\)
ΔDEF vuông tại E
=>\(ED^2+EF^2=FD^2\)
=>\(ED^2=10^2-6^2=64\)
=>\(ED=\sqrt{64}=8\left(cm\right)\)
b: Xét ΔIFE và ΔIDP có
\(\widehat{IFE}=\widehat{IDP}\)(hai góc so le trong, EF//DP)
IF=ID
\(\widehat{FIE}=\widehat{DIP}\)(hai góc đối đỉnh)
Do đó: ΔIFE=ΔIDP
=>IE=IP
Câu 1:
a: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=90^0-50^0=40^0\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-3^2=16\)
=>\(AC=\sqrt{16}=4\left(cm\right)\)
b: Xét ΔMAB và ΔMDC có
\(\widehat{MBA}=\widehat{MCD}\)(hai góc so le trong, BA//CD)
MB=MC
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔMAB=ΔMDC
=>MA=MD