K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2019

a, Xét ΔABM và ΔACM có :

AB=AC

∠B=∠C (ΔABC cân tại A)

BM=CM ( M là trung điểm của BC)

Do đó ΔABM = ΔACM (c.g.c)

b, Xét ΔBMH và ΔCMK có

BHM =CKM (=90o)

BM=CM ( M là trung điểm của BC)

∠B=∠C (ΔABC cân tại A)

Do đó ΔBMH = ΔCMK (ch-gn)

17 tháng 3 2019

c, Ta có :

BH+AH=AB( H ∈AB)

CK+AK=AC(K∈AC)

mà BH= CK (ΔBMH = ΔCMK)

AB=AC ( ΔABC cân tại A )

=> AH=AK

=> △AHK cân tại A

=> ∠H =∠K =(180O-∠A)/2

mà ∠B=∠C=(180o-∠A)/2 (ΔABC cân tại A )

=> ∠H = ∠B

mà 2 góc này ở vị trí so le trong nên HK//BC

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

Do đó:ΔABM=ΔAMC

Suy ra: MB=MC

b: BC=24cm

nên MB=MC=12cm

=>AM=16cm

c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: AH=AK

hay ΔAHK cân tại A

16 tháng 6 2021

Ý a, b chắc em tự làm được (với kiểm tra lại câu b nhé) 

c, Vì tgiac ECD = tgiac FCD 

=> DE=DF 

- Xét tgiac HKC có 2 đường cao HF và KE giao nhau tại D

=> D là trực tâm và CD là đường cao (t.c) 

=> CD \(\perp\)HK (1)

- Theo trường hợp g-c-g

=> tgiac KDF = tgiac HDE

=> DK=DH

=> tgiac DHK cân tại D

mà DM là trung tuyến do M là trung điểm HK

=> DM \(\perp\) HK (2)

- Từ (1)(2) => C, D, M thẳng hàng (đpcm) 

 

16 tháng 6 2021

Dạ em cảm ơn ak

27 tháng 12 2021
Giúp mình bài này đi mà :
17 tháng 2 2020

a ) Hướng giải :

  • Chứng minh hai tam giác HBM và tam giác KCM bằng nhau theo trường hợp cạnh huyền - góc nhọn
  • Suy ra MH = MK

b ) Hướng giải :

  • Có AB = AC ; HB = KC ( suy ra từ 2 tam giác trên )
  • Từ đó suy ra AH = HK
  • Tam giác AHK cân tại A.

a: Sửa đề: góc A<90 độ

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

góc EBC=góc DCB

=>ΔEBC=ΔDCB

b: ΔEBC=ΔDCB

=>góc KBC=góc KCB

=>KB=KC

KB+KD=BD

KC+KE=EC

mà BD=CE và KB=KC

nên KD=KE

c: Xét ΔAEK vuông tại E và ΔADK vuông tại D có

AK chung

KE=KD

=>ΔAEK=ΔADK

=>góc EAK=góc DAK

=>AK là phân giác của góc BAC

d: AB=AC

KB=KC

=>AK là trung trực của BC

=>A,K,I thẳng hàng

6 tháng 4 2018

a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:

Cạnh AC chung

BA = DA

\(\Rightarrow\Delta ABC=\Delta ADC\)   (Hai cạnh góc vuông)

\(\Rightarrow BC=DC\)

Hay tam giác BCD cân tại C.

b) Xét tam giác BKN và tam giác CDN có:

BN = CN

\(\widehat{BNK}=\widehat{CND}\)   (Đối đỉnh)

\(\widehat{KBN}=\widehat{DCN}\)   (So le trong)

\(\Rightarrow\Delta BKN=\Delta CDN\left(g-c-g\right)\)

\(\Rightarrow DN=KN\)

c) Do AM // BC nên \(\widehat{MAC}=\widehat{BCA}\)  

Mà \(\widehat{BCA}=\widehat{ACM}\) nên \(\widehat{MAC}=\widehat{MCA}\Rightarrow MA=MC\)

Từ đó ta cũng có \(\widehat{DAM}=\widehat{MDA}\Rightarrow MD=MA\)

Vậy nên MD = MC hay M là trung điểm DC

Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.

Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.

17 tháng 8 2018

Bài giải : 

a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:

Cạnh AC chung

BA = DA

⇒ΔABC=ΔADC   (Hai cạnh góc vuông)

⇒BC=DC

Hay tam giác BCD cân tại C.

b) Xét tam giác BKN và tam giác CDN có:

BN = CN

^BNK=^CND   (Đối đỉnh)

^KBN=^DCN   (So le trong)

⇒ΔBKN=ΔCDN(g−c−g)

⇒DN=KN

c) Do AM // BC nên ^MAC=^BCA  

Mà ^BCA=^ACM nên ^MAC=^MCA⇒MA=MC

Từ đó ta cũng có ^DAM=^MDA⇒MD=MA

Vậy nên MD = MC hay M là trung điểm DC

Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.

Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.