Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
Do đó:ΔABM=ΔAMC
Suy ra: MB=MC
b: BC=24cm
nên MB=MC=12cm
=>AM=16cm
c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: AH=AK
hay ΔAHK cân tại A
Ý a, b chắc em tự làm được (với kiểm tra lại câu b nhé)
c, Vì tgiac ECD = tgiac FCD
=> DE=DF
- Xét tgiac HKC có 2 đường cao HF và KE giao nhau tại D
=> D là trực tâm và CD là đường cao (t.c)
=> CD \(\perp\)HK (1)
- Theo trường hợp g-c-g
=> tgiac KDF = tgiac HDE
=> DK=DH
=> tgiac DHK cân tại D
mà DM là trung tuyến do M là trung điểm HK
=> DM \(\perp\) HK (2)
- Từ (1)(2) => C, D, M thẳng hàng (đpcm)
a: Sửa đề: góc A<90 độ
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>góc KBC=góc KCB
=>KB=KC
KB+KD=BD
KC+KE=EC
mà BD=CE và KB=KC
nên KD=KE
c: Xét ΔAEK vuông tại E và ΔADK vuông tại D có
AK chung
KE=KD
=>ΔAEK=ΔADK
=>góc EAK=góc DAK
=>AK là phân giác của góc BAC
d: AB=AC
KB=KC
=>AK là trung trực của BC
=>A,K,I thẳng hàng
a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:
Cạnh AC chung
BA = DA
\(\Rightarrow\Delta ABC=\Delta ADC\) (Hai cạnh góc vuông)
\(\Rightarrow BC=DC\)
Hay tam giác BCD cân tại C.
b) Xét tam giác BKN và tam giác CDN có:
BN = CN
\(\widehat{BNK}=\widehat{CND}\) (Đối đỉnh)
\(\widehat{KBN}=\widehat{DCN}\) (So le trong)
\(\Rightarrow\Delta BKN=\Delta CDN\left(g-c-g\right)\)
\(\Rightarrow DN=KN\)
c) Do AM // BC nên \(\widehat{MAC}=\widehat{BCA}\)
Mà \(\widehat{BCA}=\widehat{ACM}\) nên \(\widehat{MAC}=\widehat{MCA}\Rightarrow MA=MC\)
Từ đó ta cũng có \(\widehat{DAM}=\widehat{MDA}\Rightarrow MD=MA\)
Vậy nên MD = MC hay M là trung điểm DC
Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.
Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.
Bài giải :
a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:
Cạnh AC chung
BA = DA
⇒ΔABC=ΔADC (Hai cạnh góc vuông)
⇒BC=DC
Hay tam giác BCD cân tại C.
b) Xét tam giác BKN và tam giác CDN có:
BN = CN
^BNK=^CND (Đối đỉnh)
^KBN=^DCN (So le trong)
⇒ΔBKN=ΔCDN(g−c−g)
⇒DN=KN
c) Do AM // BC nên ^MAC=^BCA
Mà ^BCA=^ACM nên ^MAC=^MCA⇒MA=MC
Từ đó ta cũng có ^DAM=^MDA⇒MD=MA
Vậy nên MD = MC hay M là trung điểm DC
Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.
Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.
a, Xét ΔABM và ΔACM có :
AB=AC
∠B=∠C (ΔABC cân tại A)
BM=CM ( M là trung điểm của BC)
Do đó ΔABM = ΔACM (c.g.c)
b, Xét ΔBMH và ΔCMK có
BHM =CKM (=90o)
BM=CM ( M là trung điểm của BC)
∠B=∠C (ΔABC cân tại A)
Do đó ΔBMH = ΔCMK (ch-gn)
c, Ta có :
BH+AH=AB( H ∈AB)
CK+AK=AC(K∈AC)
mà BH= CK (ΔBMH = ΔCMK)
AB=AC ( ΔABC cân tại A )
=> AH=AK
=> △AHK cân tại A
=> ∠H =∠K =(180O-∠A)/2
mà ∠B=∠C=(180o-∠A)/2 (ΔABC cân tại A )
=> ∠H = ∠B
mà 2 góc này ở vị trí so le trong nên HK//BC