Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề : A < 90*
a, Chứng minh
\(\Delta ABD=\Delta ACE\left(c.g.c\right)\)
\(\RightarrowĐPCM\)
b, CM được :
\(\widehat{ADE}\)\(=\)\(\widehat{ACB}\)\(=\)\(\frac{180'-\widehat{BAC}}{2}\)
\(\Rightarrow DE//BC\)
c, CM được : \(\widehat{IBC}=\widehat{ICB}\)
\(\RightarrowĐPCM\)
d, Gọi M là giao điểm của AI và BC ,
CM được AI là tia phân giác của góc \(\widehat{BAC}\), từ đó \(\widehat{AMB}\)\(=90'\)
\(\RightarrowĐPCM\)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc A chung
Do đó; ΔADB=ΔAEC
=>AD=AE
b: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔiBC cân tại I
=>IB=IC
d: AB=AC
IB=IC
=>AI là trung trực của BC
=>AI vuông góc với BC
a) Xét \(\Delta\)BCE và \(\Delta\)BCD có:
CEB = BDC (= 90o)
BC: chung
EBC = DCB (\(\Delta\)ABC cân)
\(\Rightarrow\Delta\)BCE = \(\Delta\)BCD (ch-gn)
b) Xét \(\Delta\)BEK và \(\Delta\)CDK có:
BEK = CDK (= 90o)
EB = DC (\(\Delta\)BCE = \(\Delta\)BCD)
EKB = CKD (đối đỉnh)
\(\Rightarrow\Delta\) BEK = \(\Delta\)CDK (cgv-gn)
c) Ta có:
AB = AE + EB
AC = AD + DC
Mà AB = AC (\(\Delta\)ABC cân), EB = DC (\(\Delta\)BCE = \(\Delta\)BCD)
\(\Rightarrow\)AE = AD
Xét \(\Delta\)AKE và \(\Delta\)AKD có:
AEK = ADK (= 90o)
AE = AD (cmt)
AK: chung
\(\Rightarrow\)\(\Delta\) AKE = \(\Delta\)AKD (ch-cgv)
\(\Rightarrow\)KAE = KAD (2 góc tương ứng)
\(\Rightarrow\)AK là phân giác BAC
d) Xét \(\Delta\)AIB và \(\Delta\)AIC có:
AB = AC (\(\Delta\)ABC cân)
AI: chung
IB = IC (I: trung điểm BC)
\(\Rightarrow\)\(\Delta\) AIB = \(\Delta\)AIC (c.c.c)
\(\Rightarrow\)IAB = IAC (2 góc tương ứng)
\(\Rightarrow\)AI là phân giác BAC
Ta có:
+) AK là phân giác BAC
+) AI là phân giác BAC
\(\Rightarrow\)A, K, I thẳng hàng
Bài 3
Trả lời:
a) Xét ΔAKC,ΔAHBΔAKC,ΔAHB có :
AKCˆ=AHBˆ(=90O)AKC^=AHB^(=90O)
AB=AC(ΔABC cân tại A)AB=AC(ΔABC cân tại A)
Aˆ:chungA^:chung
=> ΔAKC=ΔAHBΔAKC=ΔAHB (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
~Học tốt!~
Bài 1 : a) Xét ΔAKC,ΔAHBΔAKC,ΔAHB có :
AKCˆ=AHBˆ(=90O)AKC^=AHB^(=90O)
AB=AC(ΔABC cân tại A)AB=AC(ΔABC cân tại A)
Aˆ:chungA^:chung
=> ΔAKC=ΔAHBΔAKC=ΔAHB (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
Bài 2
a, Xét tam giác OBN và tam giác MAO ta có:
OB=OA( giả thiết)
góc OBN= góc OAM=90 độ
có chung góc O
⇒⇒tam giác OBN = tam giác OAM( cạnh góc vuông/ góc nhọn kề cạnh)
suy ra: ON=OM(hai cạnh tương ứng)
+ vì OA=OB và ON=OM
suy ra : OM-OB=ON-OA
suy ra : BM=AN
b, theo câu a ta có :
tam giác OBN= tam giác OAM
suy ra : góc ANH = góc BMH( hai góc tương ứng )
xét tam giác HMB và tam giác HAN ta có
BN=AN
góc HAN = góc HBM = 900
góc ANH = góc HBM
suy ra: tam giác BMH = tam giác ANH(cạnh góc vuông/ góc nhọn kề cạnh)
suy ra : HB=HA(hai cạnh tương ứng)
xét tam giác OHA và tam giác OHB ta có
OA=OB(giả thiết)
HB=HA
OH là cạnh chung
suy ra: tam giác OHA = tam giác OHB(c.g.c)
suy ra: góc BOH= góc AOH( hai góc tương ứng)
vậy OH là tia phân giác của góc xOy
c, xét tam giác MOI và tam giác NOI ta có :
OM=On ( giả thiết)
góc BOH= góc HOA
Oi là cạnh chung
suy ra tam giác MOI= tam giác NOI(c.g.c)
suy ra góc MIO = góc NIO (hai góc tương ứng)
mà góc MIO + góc NIO = 1800 ( hai góc kề bù)
nên OI vuông góc với MN
áp dụng định lý của hai đường thẳng vuông góc ta có ba điểm O,H,I thẳng hàng
Bài 3 mình không biết làm :)))
Chúc bạn học tốt ~!
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC
a: Sửa đề: góc A<90 độ
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>góc KBC=góc KCB
=>KB=KC
KB+KD=BD
KC+KE=EC
mà BD=CE và KB=KC
nên KD=KE
c: Xét ΔAEK vuông tại E và ΔADK vuông tại D có
AK chung
KE=KD
=>ΔAEK=ΔADK
=>góc EAK=góc DAK
=>AK là phân giác của góc BAC
d: AB=AC
KB=KC
=>AK là trung trực của BC
=>A,K,I thẳng hàng