Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC/sinA=2R
=>2R=3/sin40
=>\(R\simeq2,33\left(cm\right)\)
b: góc B=180-40-60=80 độ
\(\dfrac{AC}{sinB}=\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)
=>AC/sin80=3/sin40=AB/sin60
=>\(AC\simeq5\left(cm\right)\) và \(AB\simeq4,04\left(cm\right)\)
c: \(AM=\sqrt{\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}}=\sqrt{\dfrac{5^2+4,04^2}{2}-\dfrac{3^2}{4}}\simeq4,29\left(cm\right)\)
Nhận xét: Tam giác ABC có a2 + b2 = c2 nên vuông tại C.
+ Diện tích tam giác: S = 1/2.a.b = 1/2.12.16 = 96 (đvdt)
+ Chiều cao ha: ha = AC = b = 16.
+ Tâm đường tròn ngoại tiếp tam giác là trung điểm của AB.
Bán kính đường tròn ngoại tiếp R = AB /2 = c/2 = 10.
+ Bán kính đường tròn nội tiếp tam giác: S = p.r ⇒ r = S/p.
Mà S = 96, p = (a + b + c) / 2 = 24 ⇒ r = 4.
+ Đường trung tuyến ma:
ma2 = (2.(b2 + c2) – a2) / 4 = 292 ⇒ ma = √292.
AC/sinB=2*R
=>10/sin45=2*R
=>2*R=10:căn 2/2=20căn 2
=>\(R=10\sqrt{2}\)
a,\(a=8;b=7,c=3\)
\(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{7^2+3^2-8^2}{2.3.7}=-\frac{1}{7}\) \(\Rightarrow\widehat{A}=98,2^0\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{8^2+3^2-7^2}{2.3.8}=\frac{1}{2}\Rightarrow\widehat{B}=60^0\)
\(\widehat{C}=21,8^0\)
\(b,\frac{b}{sinB}=2R\Rightarrow R=\frac{7}{2.sin60}=\frac{7\sqrt{3}}{3}\)
\(S_{ABC}=\frac{abc}{4R}=\frac{3.7.8}{4.\frac{7\sqrt{3}}{3}}=6\sqrt{3}\)
\(c,r=\frac{S}{p}=6\sqrt{3}:\left(\frac{3+7+8}{2}\right)=\frac{2\sqrt{3}}{3}\)