K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2016

Quá dễ : để đa thức bậc ba => a = 0

 ...check mk nha

12 tháng 3 2016

ai bao de may lam sai roi

NGU

10 tháng 4 2023

A(x) = ax4 - 2x3 + 3x2 - 2x4 - 7x + 1

A(x) = (ax4 - 2x4) - 2x3 + 3x2 - 2x4 - 7x + 1

A(x) = (a-2)x4 - 2x3 + 3x2 - 2x4 - 7x + 1

Vì đa thức trên có bậc là 4 nên a - 2 # 0 ⇒ a # 2

Vì a là số nguyên tố nhỏ hơn 5 nên a = 2; a =3

a = 2 (loại)

Vậy a = 3

Kết luận a = 3

 

20 tháng 11 2018

3x2 + 7x3 – 3x3 + 6x3 – 3x2 = (7x3 – 3x3 + 6x3) + (3x2 - 3x2) = 10x3.

Đa thức sau khi rút gọn có 1 hạng tử là 10x3 có bậc 3

⇒ Đa thức có bậc 3.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

25 tháng 7 2018

a. Ta có:

f(x) = x3 - 3x2 + 2x - 5 + x2 = x3 -2x2 + 2x- 5

Bậc của đa thức f(x) là 3 (0.5 điểm)

g(x) = -x3 - 5x + 3x2 + 3x + 4 = -x3 + 3x2 - 2x + 4

Bậc của đa thức g(x) là 3 (0.5 điểm)

3B

2: Ko có câu nào đúng

14 tháng 3 2018

-3x^2+2x

Ta có : \(A+3x^2-2x+1=0\)

\(\Leftrightarrow A=-3x^2+2x-1\)

Vậy \(A=-3x^2+2x-1\)

3 tháng 5 2023

\(a,N\left(x\right)=x^2+3x^4-2x-x^2+2x^3=3x^4+2x^3+\left(x^2-x^2\right)-2x\\ =3x^4+2x^3-2x\\ P\left(x\right)=-8+5x-6x^3-4x+6=-6x^3+\left(5x-4x\right)+\left(-8+6\right)\\ =-6x^3+x-2\)

Bậc của N(x) là 4

Bậc của P(x) là 3

\(b,P\left(x\right)+N\left(x\right)=3x^4+2x^3-2x-6x^3+x-2\\ =3x^4+\left(2x^3-6x^3\right)+\left(-2x+x\right)-2\\ =3x^4-4x^3-x-2\)

\(c,B\left(x\right)=-2x^2\left(x^3-2x+5x^2-1\right)\\ =\left(-2x^2\right).x^3+\left(-2x^2\right).\left(-2x\right)+\left(-2x^2\right).5x^2+\left(-2x^2\right).\left(-1\right)\\ =-2x^5+4x^3-10x^4+2x^2\\ =-2x^5-10x^4+4x^3+2x^2\)