Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
đường thẳng (d1) song song với đường thẳng (d2) khi :
a = a' và b khác b'
suy ra :
\(m-1=3\) \(\Leftrightarrow m=4\)
vậy đường thẳng (d1) song song với đường thẳng (d2) khi m = 4
Bài 1)
a) Xét phương trình hoành độ giao điểm: \(2x+3+m=3x+5-m\)
\(\Leftrightarrow x=3+m+m-5\Leftrightarrow x=2m-2\)
Để giao điểm của hai đường thẳng trên nằm trên trục tung thì \(2m-2=0\Leftrightarrow m=1\)
b) Do (d) // (d') nên (d) có phương trình \(y=-\frac{1}{2}x+b\)
Do (d) cắt trục hoành tại điểm có hoành độ x = 10 nên điểm (10;0) thuộc đường thẳng (d0.
Vậy thì \(0=-\frac{1}{2}.10+b\Leftrightarrow b=5\)
Vậy phương trình đường thẳng (d) là \(y=-\frac{1}{2}x+5\)
Bài 2)
a) Để (d1)//(d2) thì \(4m=3m+1\Leftrightarrow m=1\)
b) Để (d1)//(d2) thì \(4m\ne3m+1\Leftrightarrow m\ne1\)
Khi m = 2, ta có phương trình hoành độ giao điểm là:
\(8x-7=7x-7\Leftrightarrow x=0\)
Với \(x=0,y=-7\)
Vậy tọa độ giao điểm của (d1) và (d2) là (0; -7)
a, Gọi giao điểm (d1) và (d2) là M(xM ; yM)
Hoành độ điểm M là nghiệm của pt
2x + 1 = 3x - 1
<=> 2x - 3x = -1 - 1
<=> -x = -2
<=> x = 2
Thay x = 2 vào (d1) thì y = 2.2 + 1 = 5
=> M(2;5)
*Xét (d3)
Với x = 2 thì y = 2 + 3 = 5
=> M(2;5) thuộc (d3)
Vậy (d1) ; (d2) và (d3) đồng quy tại M(2;5)
b, Vì M(2;5) thuộc hàm y = (m-1)x + m
Nên 5 = (m-1) .2 +m
<=> 5 = 2m - 2 +m
<=> 7 = 3m
<=> \(m=\frac{7}{3}\)
Vậy ...................
1. a) Để hs trên là hs bậc nhất khi và chỉ khi a>0 --> 3+2k>0 --> k >\(\frac{-3}{2}\)
b) Vì đths cắt trục tung tại điểm có tung độ = 5 --> x=0, y=5
Thay y=5 và x=0 vào hs và tìm k
2. a) Tự vẽ
b) Hệ số góc k=\(\frac{-a}{b}=\frac{-2}{4}=\frac{-1}{2}\)
c) Phương trình hoành độ giao điểm là:\(2x+4=-x-2\)(tìm x rồi thay x vào 1 trong 2 pt --> tính y) (x=-2; y=0)
3. Vì 3 đg thẳng đồng quy -->d1 giao d2 giao d3 tại 1 điểm (giao kí hiệu là chữ U ngược)
Tính tọa độ giao điểm của d1 và d2 --> x=2;y=1
Điểm (2;1) thuộc d3 --> Thay x=2 và y=1 vào d3 -->m=3
Để hàm số y=(m-1)x+4 là hàm số bậc nhất thì \(m-1\ne0\)
hay \(m\ne1\)
a) Để (d1) và (d2) song song với nhau thì \(\left\{{}\begin{matrix}m-1=2m+3\\3m-1\ne4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-2m=3+1\\3m\ne5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-m=4\\3m\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-4\\m\ne\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=-4\)
Kết hợp ĐKXĐ, ta được: m=-4
Vậy: Để (d1) và (d2) song song với nhau thì m=-4
\(\left(d_1\right)y=\sqrt{m-1}x+3\)
\(\left(d_2\right)y=3x+1\)
\(\left(d_3\right)y=2x-3\)
Hoành độ giao điểm của 3 đường thẳng là nghiệm của phương trình:
\(3x+1=2x-3\Leftrightarrow x=-4\)
Thay \(x=-4\) vào phương trình đường thẳng \(\left(d_2\right)\), ta có:
\(y=3\left(-4\right)+1\Leftrightarrow y=-11\)
do đó điểm có toạ độ \(\left(-4;-11\right)\) thuộc đồ thị hàm số \(\left(d_1\right)\)
Thay \(x=-4,y=-11\) vào phương trình đường thẳng \(\left(d_1\right)\), ta có:
\(-11=-4\sqrt{m-1}+3\)
\(\Leftrightarrow-4\sqrt{m-1}=-14\)
\(\Leftrightarrow\sqrt{m-1}=3,5\)
\(\Leftrightarrow m=13,25\)