K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=căn 21^2+28^2=35cm

BH=AB^2/BC=21^2/35=12,6cm

b: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

23 tháng 3 2022

             xét tam giác ABC vuông tại A ( gt)

                 \(AB^2+AC^2=BC^2\)

          =>  \(BC^2=AB^2+AC^2\)

                         =  \(21^2+28^2=1225\)

          =>  BC    =  \(\sqrt{1225}=35\left(BC>0\right)\)

             VẬY BC = 35 CM 

 

a) Xét ΔCBA vuông tại A và ΔABK vuông tại K có

\(\widehat{ABK}\) chung

Do đó: ΔCBA\(\sim\)ΔABK(g-g)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạg với ΔHBA

b: Sửa đề: S ABC/S HBA=25/9

=>AB/HB=BC/BA=AC/HA=5/3

=>15/HB=BC/15=AC/HA=5/3

=>HB=9cm; BC=25cm

AC=căn 25^2-15^2=20cm

AH=15*20/25=12cm

31 tháng 3 2022

a, Xét ΔHBA và ΔABC có :

\(\widehat{H}=\widehat{A}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)

b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)

Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)

\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\)

hay \(\dfrac{AH}{16}=\dfrac{12}{20}\)

\(\Rightarrow AH=\dfrac{16.12}{20}=9,6\left(cm\right)\)

30 tháng 12 2018

a, ta có
BC^2=5^2=25
AB^2+AC^2=3^2+4^2=9+16=25
=>AB^2+AC^2=BC^2
=> tam giác ABC vuông tại A
b. 
Dx vuông góc với BC
=> góc BDH=90 độ
xét tam giác HBA và tam giác HBD có
BA=BD(gt)
HB cạnh chung
góc HAB=góc HDB= 90 độ
=> tam giác HBA= tam giác HBD(cạnh huyền- cạnh góc vuông)
=> góc HBA=góc HBD(hai góc tương ứng)
=> BH là phân giác góc ABD

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF\(\sim\)ΔACB

29 tháng 8 2021

câu c đâu bạn

7 tháng 4 2023

loading...  

a:Xet ΔABC vuông tại A và ΔIBH vuông tại I có

góc B chung

=>ΔABC đồng dạng với ΔIBH

b: \(BA=\sqrt{5^2-3^2}=4\left(cm\right)\)

HB=4-1=3cm

=>HM=MB=1,5cm

ΔABC đồng dạngvơi ΔIBH

=>AB/IB=BC/BH=AC/IH

=>4/IB=5/3=3/IH

=>IB=4:5/3=12/5cm và IH=3:5/3=9/5cm

30 tháng 3 2021

a/ Xét \(\Delta HAB\) và \(\Delta BAC\):

\(\widehat{A}:chung\)

\(\widehat{BHA}=\widehat{CBA}(=90^\circ)\)

\(\to\Delta BHA\backsim\Delta BAC(g-g)\)

b/ Áp dụng định lý Pytago vào \(\Delta ABC\) vuông tại \(A\)

\(\to AC=\sqrt{AB^2+BC^2}=\sqrt{3^2+4^2}=\sqrt{25}=4\) (cm)

\(BH.AC=BA.BC\)

\(\to BH=\dfrac{BA.BC}{AC}=\dfrac{3.4}{4}=3\) (cm)

\(\Delta HAB\backsim \Delta BAC\)

\(\to\dfrac{AH}{AB}=\dfrac{AB}{BC}\)

\(\to AH=\dfrac{AB^2}{BC}=\dfrac{3^2}{4}=\dfrac{9}{4}\) (cm)