K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 2 2020

\(\frac{1}{x+y+z}+\frac{1}{3}=\frac{1}{x+y+z}+\frac{1}{3xyz}\ge\frac{2}{\sqrt{3xyz\left(x+y+z\right)}}\ge\frac{2}{xy+yz+zx}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

NV
6 tháng 5 2021

\(VT=\dfrac{1}{z}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{z}\left(\dfrac{4}{x+y}\right)=\dfrac{4}{z\left(x+y\right)}\ge\dfrac{16}{\left(z+x+y\right)^2}\ge16\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{4};\dfrac{1}{4};\dfrac{1}{2}\right)\)

26 tháng 12 2019

Áp dụng BĐT Cô - si cho 3 số không âm:

\(1+x^3+y^3\ge3\sqrt[3]{1.x^3y^3}=3xy\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3}}{\sqrt{xy}}\)

Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}\ge\frac{\sqrt{3}}{\sqrt{zx}}\)

Cộng các vế của các BĐT trên, ta được:

\(\frac{\sqrt{1+x^3+y^3}}{xy}\)\(+\frac{\sqrt{1+y^3+z^3}}{yz}\)\(+\frac{\sqrt{1+z^3+x^3}}{zx}\ge\)\(\frac{\sqrt{3}}{\sqrt{xy}}\)\(+\frac{\sqrt{3}}{\sqrt{yz}}\)\(+\frac{\sqrt{3}}{\sqrt{zx}}\)

Tiếp tục áp dụng Cô - si:

\(BĐT\ge3\sqrt[3]{\frac{\sqrt{3}}{\sqrt{xy}}.\frac{\sqrt{3}}{\sqrt{yz}}.\frac{\sqrt{3}}{\sqrt{zx}}}=3\sqrt{3}\)

Vậy \(\frac{\sqrt{1+x^3+y^3}}{xy}\)\(+\frac{\sqrt{1+y^3+z^3}}{yz}\)\(+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)

(Dấu "="\(\Leftrightarrow x=y=z=1\))

29 tháng 12 2019

\(x^3+y^3+1=x^3+y^3+xyz\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)

Tương tự:

\(y^3+z^3+1\ge yz\left(x+y+z\right);z^3+x^3+1\ge zx\left(x+y+z\right)\)

\(\Rightarrow VT\ge\frac{\sqrt{xy\left(x+y+z\right)}}{xy}+\frac{\sqrt{yz\left(x+y+z\right)}}{yz}+\frac{\sqrt{zx\left(x+y+z\right)}}{zx}\)

\(=\sqrt{x+y+z}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)

\(\ge\sqrt{3\sqrt[3]{xyz}}\cdot3\sqrt[3]{\frac{1}{\sqrt{xy}\cdot\sqrt{yz}\cdot\sqrt{zx}}}=3\sqrt{3}\)

Dấu "=" xảy ra tại \(x=y=z=1\)

4 tháng 1 2021

Ta có đánh giá quen thuộc: \(\left(xy+yz+zx\right)^2\ge3xyz\left(x+y+z\right)=3\left(x+y+z\right)\)(Do xyz = 1)\(\Rightarrow\frac{1}{x+y+z}\ge\frac{3}{\left(xy+yz+zx\right)^2}\)

Như vậy, ta cần chứng minh: \(\frac{3}{\left(xy+yz+zx\right)^2}+\frac{1}{3}\ge\frac{2}{xy+yz+zx}\)

Đặt \(t=\frac{1}{xy+yz+zx}\)thì bất đẳng thức trở thành \(3t^2+\frac{1}{3}\ge2t\Leftrightarrow9t^2+1\ge6t\Leftrightarrow\left(3t-1\right)^2\ge0\)*đúng*

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(\hept{\begin{cases}t=\frac{1}{xy+yz+zx}=\frac{1}{3}\\x=y=z>0,xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)

1 tháng 1 2018

với xyz=2009, thay vào, ta có 

\(A=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

     =\(\frac{xz}{1+zx+y}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}=1\)

=> ... k phụ thuộc vào x,y,z(ĐPCM)

^_^

1 tháng 1 2018

Cảm ơn cậu!! ^^

27 tháng 10 2015

Phân thức thứ nhất

\(\frac{2011x}{xy+2011x+2011}=\frac{2011xz}{xyz+2011xz+2011z}=\frac{2011xz}{2011+2011xz+2011z}=\frac{2011xz}{2011\left(1+xz+z\right)}=\frac{xz}{xz+z+1}\)

Phân thức thứ hai

\(\frac{y}{yz+y+2011}=\frac{y}{yz+y+xyz}=\frac{y}{y\left(z+1+xz\right)}=\frac{1}{xz+z+1}\)

Cộng ba phân thức

=> biểu thức = \(\frac{xz+z+1}{xz+z+1}=1\)