K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

Để 2 tập hợp bằng nhau thì mỗi phần tử của tập hợp này phải bằng mỗi phần tử của tập hợp kia.

=> Có 2 trường hợp:

TH1: \(a^2+a=b^2+b\)\(a=b.\)

\(\Rightarrow a=b\left(đpcm\right).\)

TH2: \(a^2+a=b\)\(a=b^2+b.\)

Trừ theo vế cho nhau, ta được:

\(a^2+a-a=b-\left(b^2+b\right)\)

\(\Rightarrow a^2+a-a=b-b^2-b\)

\(\Rightarrow a^2=-b^2\)

\(\Rightarrow a^2+b^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=0\\b^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\Rightarrow a=b=0.\)

Vậy \(a=b.\)

Chúc bạn học tốt!

6 tháng 12 2017

Để 2 tập hợp bằng nhau thì mỗi phần tử của tập hợp này phải bằng mỗi phần tử của tập hợp kia. 
=> có 2 khả năng: 
+TH1: a^2+a = b^2+b và a = b ---> a=b. 
+ TH2: a^2+a = b và a = b^2+b. Lấy 2 biểu thức trên trừ cho nhau vế theo vế, ta được: 
a^2+a - a = b - (b^2 + b) <=> a^2 + b^2 = 0 <=> a=b=0. 
* Vậy a=b.

9 tháng 7 2021

Để 2 tập hợp bằng nhau thì mỗi phần tử của tập hợp này phải bằng mỗi phần tử của tập hợp kia.

=> Có 2 trường hợp:

TH1: a^2+a=b^2+b và a=b

⇒a=b(đpcm)

TH2: a^2+a=b và a=b^2+b

Trừ theo vế cho nhau, ta được:

a^2+a−a=b−(b^2+b)

⇒a^2+a−a=b−b^2−b

⇒a^2=−b^2

⇒a^2+b^2=0

\(\hept{\begin{cases}a^2=0\\b^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\Rightarrow a=b=0\)

Vậy a=b

Chúc bạn học tốt!

11 tháng 10 2021

a, A có \(\left(201-9\right):3+1=65\left(phần.tử\right)\)

\(B=A\) nên cũng có 65 phần tử

b, \(C=A\cap B=\left\{9;12;15;...;201\right\}\)

\(C=\left\{x\in N|x⋮3;9\le x\le201\right\}\)

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:
a. 

$f(-1)=a-b+c$

$f(-4)=16a-4b+c$

$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$

$\Rightarrow f(-4)=6f(-1)$

$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)

b.

$f(-2)=4a-2b+c$

$f(3)=9a+3b+c$

$\Rightarrow f(-2)+f(3)=13a+b+2c=0$

$\Rightarrow f(-2)=-f(3)$

$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)

2 tháng 3 2023

a. 


(

1
)
=



+

f(−1)=a−b+c


(

4
)
=
16


4

+

f(−4)=16a−4b+c



(

4
)

6

(

1
)
=
16


4

+


6
(



+

)
=
10

+
2


5

=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0



(

4
)
=
6

(

1
)
⇒f(−4)=6f(−1)



(

1
)

(

4
)
=

(

1
)
.
6

(

1
)
=
6
[

(

1
)
]
2

0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)] 
2
 ≥0 (đpcm)

b.


(

2
)
=
4


2

+

f(−2)=4a−2b+c


(
3
)
=
9

+
3

+

f(3)=9a+3b+c



(

2
)
+

(
3
)
=
13

+

+
2

=
0
⇒f(−2)+f(3)=13a+b+2c=0



(

2
)
=


(
3
)
⇒f(−2)=−f(3)



(

2
)

(
3
)
=

[

(
3
)
]
2

0
⇒f(−2)f(3)=−[f(3)] 
2
 ≤0 (đpcm

Ta có \(f\left(1\right)=g\left(2\right)\)

hay \(2.1^2+a.1+4=2^2-5.2-b\)

           \(2+a+4\)    \(=4-10-b\)

           \(6+a\)          \(=-6-b\)

          \(a+b\)           \(=-6-6\)

          \(a+b\)           \(=-12\)                    \(\left(1\right)\)

Lại có \(f\left(-1\right)=g\left(5\right)\)

hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\) 

                 \(2-a+4\)          \(=25-25-b\)

                \(6-a\)                 \(=-b\)

              \(-a+b\)                \(=-6\)

                 \(b-a\)                \(=-6\)

                 \(b\)                      \(=-b+a\)                       \(\left(2\right)\)

Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:

   \(a+\left(-6+a\right)=-12\)

   \(a-6+a\)      \(=-12\)

      \(a+a\)         \(=-12+6\)

        \(2a\)            \(=-6\)

         \(a\)             \(=-6:2\)

         \(a\)             \(=-3\)

Mà \(a=-3\) 

⇒ \(b=-6+\left(-3\right)=-9\)

Vậy \(a=3\) và \(b=-9\)

 

 

 

 

 

                               

Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "

15 tháng 3 2020

  Vì {  a2 + a ; a } và { b2 + b ; b } bằng nhau nên ta có các trường hợp sau : 

 TH1 : a = b \( \implies\) a2 +a = b2 + b ( Luôn đúng )

 TH2 : a2 + a = b và b2 + b = a 

\( \implies\) a2 + a + b2 + b = a + b

\( \implies\) a2 + b2 = 0 ( 1 )

Ta có : a2 \(\geq\) 0 ; b2 \(\geq\) 0 \( \implies\) a2 + b2 \(\geq\) 0 ( 2 )

Từ ( 1 ) ; ( 2 ) Dấu " = " xảy ra \(\iff\) \(\hept{\begin{cases}a^2=0\\b^2=0\end{cases}}\) \(\iff\) \(\hept{\begin{cases}a=0\\b=0\end{cases}}\) \( \implies\) a = b = 0

KL : a = b

3 tháng 11 2017

Đơn Giản thôi

Ta có \(\hept{\begin{cases}a^2+a=b\\b^2+b=b\end{cases}}\)Mà \(b=b\)nên \(a^2+a=b^2+b\)

Để \(a^2+a=b^2+b\)thì \(a^2=b^2\)và \(a=b\)(đpcm)

Vậy a=b

16 tháng 3 2018

Nhật Khôi nè.Tau nghĩ là a2=b2 chưa chắc a=b. Nếu a và  là hai số đối nhau thì bình lên cũng bằng nhau mà?