Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$f(-1)=a-b+c$
$f(-4)=16a-4b+c$
$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$
$\Rightarrow f(-4)=6f(-1)$
$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)
b.
$f(-2)=4a-2b+c$
$f(3)=9a+3b+c$
$\Rightarrow f(-2)+f(3)=13a+b+2c=0$
$\Rightarrow f(-2)=-f(3)$
$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)
a.
�
(
−
1
)
=
�
−
�
+
�
f(−1)=a−b+c
�
(
−
4
)
=
16
�
−
4
�
+
�
f(−4)=16a−4b+c
⇒
�
(
−
4
)
−
6
�
(
−
1
)
=
16
�
−
4
�
+
�
−
6
(
�
−
�
+
�
)
=
10
�
+
2
�
−
5
�
=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0
⇒
�
(
−
4
)
=
6
�
(
−
1
)
⇒f(−4)=6f(−1)
⇒
�
(
−
1
)
�
(
−
4
)
=
�
(
−
1
)
.
6
�
(
−
1
)
=
6
[
�
(
−
1
)
]
2
≥
0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)]
2
≥0 (đpcm)
b.
�
(
−
2
)
=
4
�
−
2
�
+
�
f(−2)=4a−2b+c
�
(
3
)
=
9
�
+
3
�
+
�
f(3)=9a+3b+c
⇒
�
(
−
2
)
+
�
(
3
)
=
13
�
+
�
+
2
�
=
0
⇒f(−2)+f(3)=13a+b+2c=0
⇒
�
(
−
2
)
=
−
�
(
3
)
⇒f(−2)=−f(3)
⇒
�
(
−
2
)
�
(
3
)
=
−
[
�
(
3
)
]
2
≤
0
⇒f(−2)f(3)=−[f(3)]
2
≤0 (đpcm
Để 2 tập hợp bằng nhau thì mỗi phần tử của tập hợp này phải bằng mỗi phần tử của tập hợp kia.
=> Có 2 trường hợp:
TH1: \(a^2+a=b^2+b\) và \(a=b.\)
\(\Rightarrow a=b\left(đpcm\right).\)
TH2: \(a^2+a=b\) và \(a=b^2+b.\)
Trừ theo vế cho nhau, ta được:
\(a^2+a-a=b-\left(b^2+b\right)\)
\(\Rightarrow a^2+a-a=b-b^2-b\)
\(\Rightarrow a^2=-b^2\)
\(\Rightarrow a^2+b^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=0\\b^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\Rightarrow a=b=0.\)
Vậy \(a=b.\)
Chúc bạn học tốt!
Cách này xem có đúng không nha bạn
Dự đoán điểm rơi: a=b=c (Để có thể dễ áp dụng AM-GM mà không sai)
Đặt: \(\hept{\begin{cases}a+b=x\\b+c=y\\a+c=z\end{cases}}\)
Do đó: \(\hept{\begin{cases}\frac{a}{b+c}=\frac{\frac{x+z-y}{2}}{y}=\frac{x+z-y}{2y}\\\frac{b}{c+a}=\frac{\frac{x+y-z}{2}}{z}=\frac{x+y-z}{2z}\\\frac{c}{a+b}=\frac{\frac{y+z-x}{2}}{x}=\frac{y+z-x}{2x}\end{cases}}\)
Thế vào:
\(VT=\left(\frac{3}{2}+\frac{x+z-y}{2y}\right)\left(\frac{3}{2}+\frac{x+y-z}{2z}\right)\left(\frac{3}{2}+\frac{y+z-x}{2x}\right)\)
\(=\frac{3y+x+z-y}{2y}\cdot\frac{3z+x+y-z}{2z}+\frac{3x+y+z-x}{2x}\)
\(=\frac{x+z+2y}{2y}\cdot\frac{x+y+2z}{2z}\cdot\frac{y+z+2x}{2x}\)
\(=\frac{x+z+y+y}{2y}\cdot\frac{x+y+z+z}{2z}\cdot\frac{y+z+x+x}{2x}\ge\frac{4\sqrt[4]{xy^2z}\cdot4\sqrt[4]{xyz^2}\cdot4\sqrt[4]{x^2yz}}{8xyz}=\frac{64\sqrt[4]{x^4y^4z^4}}{8xyz}=8\)
Vậy suy ra đpcm.
Mik đặt x+z+y+y và x+y+z+z và y+z+x+x ra rồi áp dụng AM-GM cho 4 số thực dương vì lúc đó bất đẳng thức có điểm rơi khi x=y=z hay a=b=c đúng với điểm rơi của Bđt cần CM.
Học tốt! Share thêm bài nha
Chắc ok đấy.Mình đăng lời giải của tạp chí Toán tuổi thơ nha!
Lời giải (chú ý là của tạp chí Toán tuổi thơ chứ không phải của mình)
Ta có: \(\frac{3}{2}+\frac{a}{b+c}=\frac{3b+3c+2a}{2\left(b+c\right)}\)
Áp dụng BĐT AM-GM,ta có:
\(\left(c+a\right)+\left(a+b\right)\ge2\sqrt{\left(c+a\right)\left(a+b\right)}\);
\(2\left(\sqrt{\left(c+a\right)\left(a+b\right)}+\left(b+c\right)\right)\ge4\sqrt[4]{\left(c+a\right)\left(a+b\right)\left(b+c\right)^2}\)
Thiết lập hai BĐT còn lại tương tự và nhân theo vế suy ra đpcm.
Đẳng thức xảy ra khi và chỉ khi a + b = b + c = c + a <=> a = b =c
Ta có:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{a-c}{\left(a-b\right)\left(a-c\right)}-\frac{a-b}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}=\frac{1}{a-b}+\frac{1}{c-a}\left(1\right)\)Chứng minh tương tự,ta có:\(\hept{\begin{cases}\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\left(2\right)\\\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\left(3\right)\end{cases}}\)
Từ (1);(2);(3) suy ra:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)
\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^{đpcm}\)