K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

Đơn Giản thôi

Ta có \(\hept{\begin{cases}a^2+a=b\\b^2+b=b\end{cases}}\)Mà \(b=b\)nên \(a^2+a=b^2+b\)

Để \(a^2+a=b^2+b\)thì \(a^2=b^2\)và \(a=b\)(đpcm)

Vậy a=b

16 tháng 3 2018

Nhật Khôi nè.Tau nghĩ là a2=b2 chưa chắc a=b. Nếu a và  là hai số đối nhau thì bình lên cũng bằng nhau mà?

15 tháng 3 2020

  Vì {  a2 + a ; a } và { b2 + b ; b } bằng nhau nên ta có các trường hợp sau : 

 TH1 : a = b \( \implies\) a2 +a = b2 + b ( Luôn đúng )

 TH2 : a2 + a = b và b2 + b = a 

\( \implies\) a2 + a + b2 + b = a + b

\( \implies\) a2 + b2 = 0 ( 1 )

Ta có : a2 \(\geq\) 0 ; b2 \(\geq\) 0 \( \implies\) a2 + b2 \(\geq\) 0 ( 2 )

Từ ( 1 ) ; ( 2 ) Dấu " = " xảy ra \(\iff\) \(\hept{\begin{cases}a^2=0\\b^2=0\end{cases}}\) \(\iff\) \(\hept{\begin{cases}a=0\\b=0\end{cases}}\) \( \implies\) a = b = 0

KL : a = b

6 tháng 12 2017

Để 2 tập hợp bằng nhau thì mỗi phần tử của tập hợp này phải bằng mỗi phần tử của tập hợp kia. 
=> có 2 khả năng: 
+TH1: a^2+a = b^2+b và a = b ---> a=b. 
+ TH2: a^2+a = b và a = b^2+b. Lấy 2 biểu thức trên trừ cho nhau vế theo vế, ta được: 
a^2+a - a = b - (b^2 + b) <=> a^2 + b^2 = 0 <=> a=b=0. 
* Vậy a=b.

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

Áp dụng BĐT Cô-si:

$\frac{a^2}{2}+8b^2\geq 2\sqrt{\frac{a^2}{2}.8b^2}=4ab$

$\frac{a^2}{2}+8c^2\geq 2\sqrt{\frac{a^2}{2}.8c^2}=4ac$

$2(b^2+c^2)\geq 2.2\sqrt{b^2c^2}=4bc$

Cộng các BĐT trên theo vế và thu gọn ta được:

$a^2+10(b^2+c^2)\geq 4(ab+bc+ac)=4$

Ta có đpcm.

9 tháng 7 2021

Để 2 tập hợp bằng nhau thì mỗi phần tử của tập hợp này phải bằng mỗi phần tử của tập hợp kia.

=> Có 2 trường hợp:

TH1: a^2+a=b^2+b và a=b

⇒a=b(đpcm)

TH2: a^2+a=b và a=b^2+b

Trừ theo vế cho nhau, ta được:

a^2+a−a=b−(b^2+b)

⇒a^2+a−a=b−b^2−b

⇒a^2=−b^2

⇒a^2+b^2=0

\(\hept{\begin{cases}a^2=0\\b^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\Rightarrow a=b=0\)

Vậy a=b

Chúc bạn học tốt!

12 tháng 7 2020

thx ban

21 tháng 4 2021

Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12

7 tháng 12 2015

Bạn đánh lại đề đi, Để ghi dấu mũ bạn ấn nút "x2" trên thanh công cụ, sau khi bạn gõ xong dấu mũ rồi bạn ấn lại nó để đưa về trạng thái thường

7 tháng 12 2015

\(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)

Vậy \(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)

12 tháng 1 2022

đề sai r bạn

12 tháng 1 2022

chuẩn cm nó luôn