Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=2x\left(x+y\right)=2x^2+2xy\) Với x khác y, x khác -y
\(3x^2+y^2+2x-2y=1\)\(\Leftrightarrow2x^2+2xy+y^2+x^2+1-2xy+2x-2y=2\)
\(\Leftrightarrow P+\left(x-y+1\right)^2=2\)\(\Leftrightarrow P=2-\left(x-y+1\right)^2\le2\)vì \(\left(x-y+1\right)^2\ge0\)với mọi x, y là số thực
Vì P nguyên dương => P=1
Khi đó \(\left(x-y+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}x-y+1=-1\\x-y+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y=-2\\x-y=0\left(loai\right)\end{cases}}\)
vì x khác y
Theo bđt Cauchy schwarz dạng Engel
\(P\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{1+1}=\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\)
Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bđt phụ)
\(\Rightarrow P\ge\frac{\left[2.1+4\right]^2}{2}=\frac{36}{2}=18\)
Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)
\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+\dfrac{1}{x}+2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+2y+\dfrac{4}{x+y}\right)^2=18\)
\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)
x+xy+y+1=9
(x+1)(y+1)=9
áp dụng bđt ab<=(a+b)^2/4
->9<=(x+y+2)^2/4 -> x+y >=4
....
\(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
\(=\frac{\left(2x+\frac{1}{x}\right)^2}{1}+\frac{\left(2y+\frac{1}{y}\right)^2}{1}\)
\(\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}=18\)
Đẳng thức xảy ra tại x=y=1/2
\(A=\left(1+\frac{x^2}{y^2}\right)\left(1+\frac{y^2}{x^2}\right)\ge2\sqrt{\frac{x^2}{y^2}}.2\sqrt{\frac{y^2}{x^2}}=2.\frac{x}{y}.2.\frac{y}{x}=4\) ( Cosi )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)
...
\(M=\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)
\(\ge2\cdot\frac{1}{\sqrt{xy}}\sqrt{1+x^2y^2}\)
\(=2\cdot\sqrt{\frac{1}{xy}+xy}\)
\(=2\cdot\sqrt{xy+\frac{1}{16xy}+\frac{15}{xy}}\)
\(\ge2\sqrt{2\sqrt{xy\cdot\frac{1}{16xy}}+\frac{15}{16xy}}\left(1\right)\)
Áp dụng BĐT phụ \(ab\le\frac{\left(a+b\right)^2}{4}\) ta có:
\(\left(1\right)\ge2\cdot\sqrt{\frac{1}{2}+\frac{15}{4\cdot\left(x+y\right)^2}}\ge2\sqrt{\frac{1}{2}+\frac{15}{4}}=\sqrt{17}\)
Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)
Áp dụng BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\) và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+\frac{4}{1}\right)^2}{2}=\frac{6^2}{2}=18\)
Nên GTNN của P là 18 đạt được khi \(x=y=\frac{1}{2}\)
bạn thật là thông minh quá đi^^