Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(2x+\dfrac{1}{x}\right)^2+9+\left(2y+\dfrac{1}{y}\right)^2+9-18\)
\(P\ge2\sqrt{9\left(2x+\dfrac{1}{x}\right)^2}+2\sqrt{9\left(2y+\dfrac{1}{y}\right)^2}-18\)
\(P\ge12x+12y+\dfrac{6}{x}+\dfrac{6}{y}-18\)
\(P\ge6\left(4x+\dfrac{1}{x}\right)+6\left(4y+\dfrac{1}{y}\right)-12\left(x+y\right)-18\)
\(P\ge6.2\sqrt{\dfrac{4x}{x}}+6.2\sqrt{\dfrac{4y}{y}}-12.1-18=18\)
\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)
\(H=x^2+2y^2+\frac{1}{x}+\frac{24}{y}\)
\(\Leftrightarrow H=\left(\frac{1}{2}x^2+\frac{1}{2x}+\frac{1}{2x}\right)+\left(\frac{3}{2}y^2+\frac{12}{y}+\frac{12}{y}\right)+\left(\frac{1}{2}x^2+\frac{1}{2}\right)+\left(\frac{1}{2}y^2+2\right)-\frac{5}{2}\)
Áp dụng BĐT AM-GM ta có:
\(H\ge3.\sqrt[3]{\frac{1}{2}x^2.\frac{1}{2x}.\frac{1}{2x}}+3.\sqrt[3]{\frac{3}{2}y^2.\frac{12}{y}.\frac{12}{y}}+2.\sqrt{\frac{1}{2}x^2.\frac{1}{2}}+2.\sqrt{\frac{1}{2}y^2.2}-\frac{5}{2}=\frac{3}{2}+18+x+2y-\frac{5}{2}\ge22\)Dấu " = " xảy ra <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)( tự giải nhé )
KL:....
\(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left[2\left(x+y\right)+\frac{4}{x+y}\right]^2}{2}\)
\(=8\)
Dấu "=" xảy ra tại x=y=1/2
Có vẻ kết quả bị sai Huy ơi.
Diệp thay kết quả cuối cùng 8 ------------> 18 nhé!
Theo bđt Cauchy schwarz dạng Engel
\(P\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{1+1}=\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\)
Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bđt phụ)
\(\Rightarrow P\ge\frac{\left[2.1+4\right]^2}{2}=\frac{36}{2}=18\)
Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)
\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+\dfrac{1}{x}+2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+2y+\dfrac{4}{x+y}\right)^2=18\)
\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)
\(\left(x-y\right)^2\ge0;\forall xy\Rightarrow x^2+y^2\ge2xy\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow x+y\ge2\sqrt{xy}\)
\(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{2}{xy}\Rightarrow xy\ge4\Rightarrow x+y\ge2\sqrt{xy}\ge2\sqrt{4}=4\)
\(C_{min}=4\) khi \(x=y=2\)
Hoặc là:
\(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(\dfrac{4}{x+y}\right)^2=\dfrac{8}{\left(x+y\right)^2}\)
\(\Rightarrow\left(x+y\right)^2\ge16\Rightarrow x+y\ge4\)
Áp dụng BĐT AM-GM ta có:
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)
Xảy ra khi \(x=y=\frac{1}{2}\)
Cho x,y là các số dương thỏa mãn \(\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{1}{2}\)
Tìm GTNN của C = x+y
Đề bài sai, C không có giá trị nhỏ nhất
Nếu \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\) thì có thể tìm được min của C
x+y=k (k là hằng số > 0)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(P\ge\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\ge\frac{\left(2k+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2k+\frac{4}{k}\right)^2}{2}=\frac{\left(\frac{2k^2+4}{k}\right)^2}{2}\)
Đẳng thức xảy ra <=> x = y = k/2
Vậy ...
k bằng bao nhiêu bạn tự thay số nhé :c mình chỉ làm dàn vậy thôi :>
ko biết xin đừng vào trl