Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay phân thức P vào biểu thức A rồi rút gọn chúng ta thu được A = u + v với điều kiện các biểu thức có nghĩa.
b) Tương tự a) ta có B = 1.
Thay P = \(\frac{xy}{x-y}\) vào biểu thức ta được :
\(\frac{x.\frac{xy}{x-y}}{x+\frac{xy}{x-y}}-\frac{y.\frac{xy}{x-y}}{y-\frac{xy}{x-y}}\)
Ta có :
\(\frac{x.\frac{xy}{x-y}}{x+\frac{xy}{x-y}}=\frac{x^2y}{x-y}:\left(x+\frac{xy}{x-y}\right)\)
= \(\frac{x^2y}{x-y}:\frac{x\left(x-y\right)+xy}{x-y}\)
= \(\frac{x^2y}{x-y}:\frac{x^2}{x-y}\)
= \(\frac{x^2y}{x-y}.\frac{x-y}{x^2}\)
= \(y\)
\(\frac{y.\frac{xy}{x-y}}{y-\frac{xy}{x-y}}=\frac{xy^2}{x-y}:\left(y-\frac{xy}{x-y}\right)\)
= \(\frac{xy^2}{x-y}:\frac{y\left(x-y\right)-xy}{x-y}\)
= \(\frac{xy^2}{x-y}:\frac{-y^2}{x-y}\)
= \(\frac{xy^2}{x-y}.\frac{x-y}{-y^2}\)
= \(-x\)
Vậy giá trị biểu thức bằng \(y-\left(-x\right)=x+y\)
Chúc bạn học tốt !!!
d: \(D=x^3-6x^2+12x-100\)
\(=x^3-6x^2+12x-8-92\)
\(=\left(x-2\right)^3-92\)
Khi x=-98 thì \(D=\left(-98-2\right)^3-92=-1000000-92=-1000092\)
e: \(E=\left(x+1\right)^3+6\left(x+1\right)^2+12x+20\)
\(=\left(x+1\right)^3+6\left(x+1\right)^2+12\left(x+1\right)+8\)
\(=\left(x+1+2\right)^3\)
\(=\left(x+3\right)^3\)
Khi x=5 thì \(E=\left(5+3\right)^3=8^3=512\)
f: \(F=\left(2x-1\right)\left(4x^2+2x+1\right)-7\left(x^3+1\right)\)
\(=\left(2x\right)^3-1^3-7x^3-7\)
\(=x^3-8\)
Khi x=-1/2 thì \(F=\left(-\dfrac{1}{2}\right)^3-8=-\dfrac{1}{8}-8=-\dfrac{65}{8}\)
g: \(G=\left(-x-2\right)^3+\left(2x-4\right)\left(x^2+2x+4\right)-x^2\left(x-6\right)\)
\(=-\left(x+2\right)^3+2\left(x-2\right)\left(x^2+2x+4\right)-x^3+6x^2\)
\(=-x^3-6x^2-12x-8+2\left(x^3-8\right)-x^3+6x^2\)
\(=-2x^3-12x-8+2x^3-16=-12x-24\)
Khi x=-2 thì \(G=-12\cdot\left(-2\right)-24=24-24=0\)
h: \(H=\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\)
\(=x^3-3x^2+3x-1-\left(x^3+8\right)+3\left(x^2-16\right)\)
\(=x^3-3x^2+3x-1-x^3-8+3x^2-48\)
\(=3x-57\)
Khi x=-1/2 thì \(H=3\cdot\dfrac{-1}{2}-57=-1,5-57=-58,5\)
\(\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^3-2x^2-4x+8}\)
Để biểu thức trên nhận giá trị âm khi \(\dfrac{\left(x-2\right)^2}{x^3-2x^2-4x+8}< 0\)
\(\Rightarrow x^3-2x^2-4x+8< 0\)do \(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+4\right)-2x\left(x+2\right)< 0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)^2< 0\Leftrightarrow x< -2\)
Thay vào biểu thức ta được:
Ta có:
Vậy giá trị biểu thức bằng y – (-x) = x + y.