K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề: 4/x^2-1

a: \(A=\left(\dfrac{x+1}{x-1}+\dfrac{4}{x^2-1}-\dfrac{x-1}{x+1}\right):\dfrac{x^2-4x+4}{x^2+x}\)

\(=\dfrac{x^2+2x+1+4-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x\left(x+1\right)}{\left(x-2\right)^2}\)

\(=\dfrac{4x+4}{\left(x-1\right)}\cdot\dfrac{x}{\left(x-2\right)^2}=\dfrac{x\left(4x+4\right)}{\left(x-1\right)\left(x-2\right)^2}\)

b: Khi x=1/2 thì \(A=\dfrac{\dfrac{1}{2}\left(2+4\right)}{\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}-2\right)^2}=\dfrac{-8}{3}\)

20 tháng 6 2021

a)

A=\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5x-5}\)

\(\Leftrightarrow\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5\left(x-1\right)}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+1\\x=0-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

MTC: 5(x-1)(x+1)

\([\dfrac{5\left(x+1\right)\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}-\dfrac{5\left(x-1\right)\left(x-1\right)}{5\left(x-1\right)\left(x+1\right)}]\div\dfrac{2x\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow[5\left(x+1\right)\left(x+1\right)-5\left(x-1\right)\left(x-1\right)]\div2x\left(x+1\right)\)

\(\Leftrightarrow[5\left(x+1\right)^2-5\left(x-1\right)^2]\div2x^2+2x\)

\(\Leftrightarrow[5\left(x^2+2x+1\right)-5\left(x^2-2x+1\right)]\div2x^2+2x\)

\(\Leftrightarrow(5x^2+10x+5-5x^2+10x-5)\div2x^2+2x\)

\(\Leftrightarrow20x\div\left(2x^2+2x\right)\)

\(\Leftrightarrow10x+10\)

26 tháng 1 2022

1. ĐKXĐ: \(x\ne\pm1\)

 

2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)

\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-3}{x-1}\)

 

3. Tại x = 5, A có giá trị là:

\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)

 

4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)

Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)

Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)

 

29 tháng 12 2020

a) \(ĐKXĐ:x\ne\pm2\)

b) 

\(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right).\dfrac{x+2}{2}\\ =\left[\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right].\dfrac{x+2}{2}\\ =\left[\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{1\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right].\dfrac{x+2}{2}\\ =\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}.\dfrac{x+2}{2}\\ =\dfrac{-6}{\left(x-2\right)\left(x +2\right)}.\dfrac{x+2}{2}\\ =\dfrac{-3}{x-2}\)

c) Khi \(A=1\) ta có

\(1=\dfrac{-3}{x-2}\\ \Leftrightarrow x-2=\left(-3\right).1\\ \Leftrightarrow x-2=-3\\ \Leftrightarrow x=-3+2\\ \Leftrightarrow x=-1\)

Vậy \(A=1\Leftrightarrow x=-1\)

 

NM
29 tháng 12 2020

ta có

\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right).\frac{x+2}{2}\)

điều kiện xác định \(\hept{\begin{cases}x^2-4\ne0\\2-x\ne0\\x+2\ne0\end{cases}\Leftrightarrow x\ne\pm2}\)

b.\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right).\frac{x+2}{2}=\left(\frac{x-2\left(x+2\right)+\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\frac{x+2}{2}\)

\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{2}=-\frac{3}{x-2}\)

c. khi \(x=1\Rightarrow A=-\frac{3}{x-2}=-\frac{3}{1-2}=3\)

30 tháng 10 2023

a) ĐKXĐ: 

\(\left\{{}\begin{matrix}x^2-9\ne0\\x+3\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\ne-3\end{matrix}\right.\Leftrightarrow x\ne\pm3\) 

b) \(A=\dfrac{x+15}{x^2-9}-\dfrac{2}{x+3}\)

\(A=\dfrac{x+15}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{x+15-2x+6}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{21-x}{\left(x+3\right)\left(x-3\right)}\)

c) Thay x = - 1 vào A ta có: 

\(A=\dfrac{21-\left(-1\right)}{\left(-1+3\right)\left(-1-3\right)}=\dfrac{21+1}{2\cdot-4}=\dfrac{22}{-8}=-\dfrac{11}{4}\)

a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)

\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x}{x-2}\)

a) ĐKXĐ: \(x\notin\left\{0;-\dfrac{1}{2};\dfrac{1}{2}\right\}\)

Ta có: \(A=\left(\dfrac{1}{2x-1}+\dfrac{3}{1-4x^2}-\dfrac{2}{2x+1}\right):\left(\dfrac{x^2}{2x^2+x}\right)\)

\(=\left(\dfrac{2x+1}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{3}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{2\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}\right):\left(\dfrac{x^2}{x\left(2x+1\right)}\right)\)

\(=\dfrac{2x+1-3-4x+2}{\left(2x-1\right)\left(2x+1\right)}:\dfrac{x}{2x+1}\)

\(=\dfrac{-2x}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x}\)

\(=\dfrac{-2}{2x-1}\)

b) Ta có: \(\left|2x-1\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2\\2x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\left(nhận\right)\\x=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

Thay \(x=\dfrac{3}{2}\) vào biểu thức \(A=\dfrac{-2}{2x-1}\), ta được:

\(A=-2:\left(2\cdot\dfrac{3}{2}-1\right)=-2:\left(3-1\right)=-2:2=-1\)

Vậy: Khi \(\left|2x-1\right|=2\) thì A=-1

c) Để \(A=\dfrac{1}{3}\) thì \(\dfrac{-2}{2x-1}=\dfrac{1}{3}\)

\(\Leftrightarrow2x-1=-6\)

\(\Leftrightarrow2x=-5\)

hay \(x=-\dfrac{5}{2}\)(thỏa ĐK)

Vậy: Để \(A=\dfrac{1}{3}\) thì \(x=-\dfrac{5}{2}\)

4 tháng 2 2021

Cảm ơn bạn nhiều ạ!