K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2020

Gọi ước chung lớn nhất của x - z và y - z là d ( d \(\in\)\(ℕ^∗\))

\(\Rightarrow\hept{\begin{cases}x-z⋮d\\y-z⋮d\end{cases}}\)

\(\Rightarrow\left(x-z\right).\left(y-z\right)⋮d^2\)

\(\Rightarrow z^2⋮d^2\Rightarrow z⋮d\)

\(\Rightarrow\hept{\begin{cases}x⋮d\\y⋮d\end{cases}}\)

Mà x, y nguyên tố cùng nhau \(\Rightarrow d=1\)

\(\Rightarrow\)\(\left(x-z,y-z\right)=1\)

Mà (x-z)(y-z)=z^2 chính phương

x,y,z thuộc N*

\(\Rightarrow x-z\)và \(y-z\)đều là số chính phương

\(\Rightarrow\hept{\begin{cases}x-z=m^2\\y-z=n^2\end{cases}}\)

với m,n thuộc Z

\(\Rightarrow\left(x-z\right)\left(y-z\right)=z^2=m^2n^2\)

\(\Rightarrow z=mn\)

Ta có: (x-z)+(y-z)=(x+y)-2z

\(\Rightarrow\left(x+y\right)=m^2+n^2+2mn\)

\(\Rightarrow x+y=\left(m+n\right)^2\)

Mặt khác: \(\left(x-z\right)\left(y-z\right)=z^2\)

\(\Rightarrow xy-zy-zx+z^2=z^2\Rightarrow xy-zy-zx=0\)\(\Rightarrow xy-z\left(x+y\right)=0\Rightarrow xy=z\left(x+y\right)\)

\(\Rightarrow xyz=z^2\left(x+y\right)=z^2\left(m+n\right)^2\)là số chính phương với z thuộc N*, m,n thuộc Z (đpcm)

Vậy xyz là số chính phương.

16 tháng 8 2020

xyz là số chính phương

4 tháng 4 2016

Sao ko thay cau tra loi cua may ban trc vay

27 tháng 3 2020

Gọi ước chung lớn nhất của x - z và y - z là d ( d \(\in\)\(ℕ^∗\))

\(\Rightarrow\hept{\begin{cases}x-z⋮d\\y-z⋮d\end{cases}}\)

\(\Rightarrow\left(x-z\right).\left(y-z\right)⋮d^2\)

\(\Rightarrow z^2⋮d^2\Rightarrow z⋮d\)

\(\Rightarrow\hept{\begin{cases}x⋮d\\y⋮d\end{cases}}\)

Mà x, y nguyên tố cùng nhau \(\Rightarrow d=1\)

\(\Rightarrow\)\(\left(x-z,y-z\right)=1\)

Mà (x-z)(y-z)=z^2 chính phương

x,y,z thuộc N*

\(\Rightarrow x-z\)và \(y-z\)đều là số chính phương

\(\Rightarrow\hept{\begin{cases}x-z=m^2\\y-z=n^2\end{cases}}\)

với m,n thuộc Z

\(\Rightarrow\left(x-z\right)\left(y-z\right)=z^2=m^2n^2\)

\(\Rightarrow z=mn\)

Ta có: (x-z)+(y-z)=(x+y)-2z

\(\Rightarrow\left(x+y\right)=m^2+n^2+2mn\)

\(\Rightarrow x+y=\left(m+n\right)^2\)

Mặt khác: \(\left(x-z\right)\left(y-z\right)=z^2\)

\(\Rightarrow xy-zy-zx+z^2=z^2\Rightarrow xy-zy-zx=0\)\(\Rightarrow xy-z\left(x+y\right)=0\Rightarrow xy=z\left(x+y\right)\)

\(\Rightarrow xyz=z^2\left(x+y\right)=z^2\left(m+n\right)^2\)là số chính phương với z thuộc N*, m,n thuộc Z (đpcm)

Vậy xyz là số chính phương.

+)Ta có:a+b\(⋮\)c

               a+c\(⋮\)b

              b+c\(⋮\)a

=>(a+b)+(a+c)+(b+c)\(⋮\)a+b+c

=>a+b+a+c+b+c\(⋮\)a+b+C

=>2a+2b+2c\(⋮\)a+b+c

=>2.(a+b+c)\(⋮\)a+b+c

=>a+b+c\(⋮\)2

Th1:a=2;b và c là số nguyên tố lẻ chì chia hết cho 2

TH2:a và c là số nguyên tố lẻ;b=2

TH3:a và b là số nguyên tố lẻ,c=2

Vậy cả 3 TH trên đều thỏa mãn

Chúc bn học tốt

15 tháng 4 2020

DÊ vcl