K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2021

Áp dụng BĐT BSC:

\(P=\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}\ge\dfrac{\left(1+2+3\right)^2}{a+b+c}=\dfrac{36}{1}=36\)

\(minP=36\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{6}\\b=\dfrac{1}{3}\\c=\dfrac{1}{2}\end{matrix}\right.\)

NV
17 tháng 1 2021

Dự đoán điểm rơi xảy ra tại \(\left(a;b;c\right)=\left(3;2;4\right)\)

Đơn giản là kiên nhẫn tính toán và tách biểu thức:

\(D=13\left(\dfrac{a}{18}+\dfrac{c}{24}\right)+13\left(\dfrac{b}{24}+\dfrac{c}{48}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{2}{ab}\right)+\left(\dfrac{a}{18}+\dfrac{c}{24}+\dfrac{2}{ac}\right)+\left(\dfrac{b}{8}+\dfrac{c}{16}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{c}{12}+\dfrac{8}{abc}\right)\)

Sau đó Cô-si cho từng ngoặc là được

13 tháng 1 2022

Có cách nào làm ngắn hơn ko ạ

17 tháng 1 2021

Áp dụng bđt AM - GM:

\(P=3a+3b-1+\left[\left(a+1\right)+b+\dfrac{c^3}{b\left(a+1\right)}\right]\ge3a+3b-1+3c=3.5-1=14\).

Đẳng thức xảy ra khi a = 1; b = 2; c = 2.

Vậy Min P = 14 khi a = 1; b = 2; c = 2.

16 tháng 3 2021

Đặt \(a=\dfrac{yz}{x^2};b=\dfrac{zx}{y^2};c=\dfrac{xy}{z^2}\)

Áp dụng BĐT BSC:

\(\dfrac{1}{a^2+a+1}+\dfrac{1}{b^2+b+1}+\dfrac{1}{c^2+c+1}\)

\(=\dfrac{x^4}{x^4+x^2yz+y^2z^2}+\dfrac{y^4}{y^4+y^2zx+z^2x^2}+\dfrac{z^4}{z^4+z^2xy+x^2y^2}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)}\)

Ta cần chứng minh: 

\(\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)}\ge1\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2\ge x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2-xy.yz-yz.zx-zx.xy\ge0\)

\(\Leftrightarrow\left(xy-yz\right)^2+\left(yz-zx\right)^2+\left(zx-xy\right)^2\ge0,\forall x,y,z\)

\(\Rightarrow dpcm\)

Đẳng thức xảy ra khi \(a=b=c=1\)

NV
8 tháng 4 2021

\(\left(a^3+b^2+c\right)\left(\dfrac{1}{a}+1+c\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow\dfrac{a^3+b^2+c}{a}\ge\dfrac{\left(a+b+c\right)^2}{1+a+ac}=\dfrac{9}{1+a+ac}\)

\(\Rightarrow\dfrac{a}{a^3+b^2+c}\le\dfrac{1+a+ac}{9}\)

Tương tự: \(\dfrac{b}{b^3+c^2+a}\le\dfrac{1+b+ab}{9}\)\(\dfrac{c}{c^3+a^2+b}\le\dfrac{1+c+bc}{9}\)

Cộng vế:

\(P\le\dfrac{3+a+b+c+ab+bc+ca}{9}\le\dfrac{6+\dfrac{1}{3}\left(a+b+c\right)^3}{9}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
21 tháng 3 2022

Ta có:

\(\dfrac{a}{bc}+\dfrac{b}{ca}\ge2\sqrt{\dfrac{ab}{abc^2}}=\dfrac{2}{c}\)

Tương tự: \(\dfrac{a}{bc}+\dfrac{c}{ab}\ge\dfrac{2}{b}\) ; \(\dfrac{b}{ca}+\dfrac{c}{ab}\ge\dfrac{2}{a}\)

Cộng vế với vế: \(\Rightarrow\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Rightarrow P\ge\dfrac{a^2+b^2+c^2}{2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Rightarrow P\ge\dfrac{1}{2}\left(a^2+\dfrac{1}{a}+\dfrac{1}{a}\right)+\dfrac{1}{2}\left(a^2+\dfrac{1}{b}+\dfrac{1}{b}\right)+\dfrac{1}{2}\left(c^2+\dfrac{1}{c}+\dfrac{1}{c}\right)\)

\(\Rightarrow P\ge\dfrac{1}{2}.3\sqrt[3]{\dfrac{a^2}{a^2}}+\dfrac{1}{2}.3\sqrt[3]{\dfrac{b^2}{b^2}}+\dfrac{1}{2}.3\sqrt[3]{\dfrac{c^2}{c^2}}=\dfrac{9}{2}\)

\(P_{min}=\dfrac{9}{2}\) khi \(a=b=c=1\)

22 tháng 6 2018

\(a+b+c=2\Rightarrow ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{4}{3}\)

\(P=\dfrac{7+2b}{1+a}+\dfrac{7+2c}{1+b}+\dfrac{7+2a}{1+c}\)

\(\ge\dfrac{\left(21+2\left(a+b+c\right)\right)^2}{\left(1+a\right)\left(7+2b\right)+\left(1+b\right)\left(7+2c\right)+\left(1+c\right)\left(7+2a\right)}\)

\(=\dfrac{25^2}{21+9\left(a+b+c\right)+2\left(ab+bc+ca\right)}\ge\dfrac{25^2}{21+9.2+\dfrac{2.4}{3}}=15\)

\("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)