Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(0\le a\le b\le c\le1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)
Và \(ab+1\ge c\)
Do vậy \(2\left(ab+1\right)\ge a+b+c\Leftrightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
Cm tương tự ta có : \(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\\\frac{b}{ca+1}\le\frac{2b}{a+b+c}\end{cases}}\)
Cộng vế với vế của 3 bđt trên :
\(\frac{a}{bc+1}+\frac{b}{ca+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(a;b;c\right)=\left(0;1;1\right)\) và hoán vị
** Lần sau bạn chú ý, gõ đề bằng công thức toán.
Lời giải:
Vì $0\leq a,b,c\leq 1$ nên $0\leq c\leq ab+1\Rightarrow \frac{c}{ab+1}\leq 1(1)$
Mặt khác:
$0\leq a\leq b\leq c\leq 1$ nên:
$\frac{a}{bc+1}+\frac{b}{ac+1}\leq \frac{a}{ab+1}+\frac{b}{ab+1}=\frac{a+b}{ab+1}=\frac{a+b}{ab+1}-1+1=\frac{(a-1)(1-b)}{ab+1}+1\leq 1(2)$
Lấy $(1)+(2)$ ta có đpcm
Dấu "=" xảy ra khi $(a,b,c)=(0,1,1)$
từ giả thiết suy ra
\(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\frac{-1}{c^3}\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{-3.1}{\frac{a.1}{b.\left(\frac{1}{a+\frac{1}{b}}\right)}}=3...\)
\(\Rightarrow\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
=abc.3/(abc)=3
Câu hỏi của ngô thị đào - Toán lớp 8 - Học toán với OnlineMath
Bài làm đúng.
Ta có :
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)
\(\frac{a^2+b^2}{c^2+d^2}-\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)
TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{b}\left(3\right)\)
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)
từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\text{ hay }\frac{a}{b}=\frac{c}{d}\)
TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)+\left(b-a\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2b}{2c}=\frac{b}{c}\left(5\right)\)
\(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)-\left(b-a\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2a}{2d}=\frac{a}{d}\left(6\right)\)
Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\text{ hay }\frac{a}{b}=\frac{d}{c}\)
Vậy : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\text{ thì }\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)
kinh quá
Ta có\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
<=> cd(a2 + b2) = ab(c2 + d2)
<=> a2cd + b2cd - abc2 - abd2 = 0
<=> (a2cd - abc2) + (b2cd - abd2) = 0
<=> ac(ad - bc) + bd(bc - ad) = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> \(\orbr{\begin{cases}ac-bd=0\\ad-bc=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{a}{d}=\frac{b}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}}\left(\text{đpcm}\right)\)
Giải:
Từ giả thiết ta có:
\(\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-\left(b+c\right)+bc\ge0\)
\(\Leftrightarrow bc+1\ge b+c\)
\(\Rightarrow\frac{a}{bc+1}\le\frac{a}{b+c}\le\frac{a}{a+b}\left(1\right)\)
Tương tự ta có:
\(\frac{b}{ac+1}\le\frac{b}{a+c}\le\frac{b}{a+b}\left(2\right)\)
\(\frac{c}{ab+1}\le c\le1\left(3\right)\)
Cộng theo vế \(\left(1\right);\left(2\right);\left(3\right)\) ta được:
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a+b}{a+b}+1=2\)
Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\) (Đpcm)