K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

\(P=\frac{2000a}{ab+2000a+2000}+\frac{b}{bc+b+2000}+\frac{c}{ac+c+1}\)

\(=\frac{a\cdot abc}{ab+abc\cdot a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(=\frac{a^2bc}{ab\left(ac+c+1\right)}+\frac{b}{b\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)

\(=\frac{ac+c+1}{ac+c+1}=1\)

15 tháng 6 2017

Đặt bt là P ta có

P = 2000a/(ab + 2000a + 2000) + b/(bc + b + 2000) + c/(ac + c + 1) 
= 2000ac/(abc + 2000ac + 2000c) + b/(bc + b + abc) + c/(ac + c + 1) 
= 2000ac/(2000 + 2000ac + 2000c) + 1/(1 + c + ac) + c/(ac + c + 1) 
= ac/(1 + ac + c) + 1/(ac + c + 1) + c/(ac + c + 1) 
= (ac + c + 1)/(ac + c + 1) = 1

18 tháng 8 2017

P=\(\dfrac{2000a}{ab+2000a+2000}\)

P=\(\dfrac{a^2bc}{ab+a^2bc+abc}\)

P=\(\dfrac{a^2bc}{ab\left(1+ac+c\right)}\)

P=\(\dfrac{ac}{1+ac+c}\)

4 tháng 8 2015

1/a+1/b+1/c=1/200
=>\(\frac{a+b}{ab}=\frac{1}{2000}-\frac{1}{c}\)\(\frac{\Leftrightarrow a+b}{ab}=\frac{c-2000}{2000c}\Rightarrow\left(c-2000\right)ab=\left(a+b\right)2000c\)

a + b   +c = 2000 => a + b = 2000 - c
________________________________________**** cho mình nhé bn 
Lee Min Ho
 

22 tháng 9 2019

Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo cách làm tương tự !