K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

\(P=\frac{2000a}{ab+2000a+2000}+\frac{b}{bc+b+2000}+\frac{c}{ac+c+1}\)

\(=\frac{a\cdot abc}{ab+abc\cdot a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(=\frac{a^2bc}{ab\left(ac+c+1\right)}+\frac{b}{b\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)

\(=\frac{ac+c+1}{ac+c+1}=1\)

15 tháng 6 2017

Đặt bt là P ta có

P = 2000a/(ab + 2000a + 2000) + b/(bc + b + 2000) + c/(ac + c + 1) 
= 2000ac/(abc + 2000ac + 2000c) + b/(bc + b + abc) + c/(ac + c + 1) 
= 2000ac/(2000 + 2000ac + 2000c) + 1/(1 + c + ac) + c/(ac + c + 1) 
= ac/(1 + ac + c) + 1/(ac + c + 1) + c/(ac + c + 1) 
= (ac + c + 1)/(ac + c + 1) = 1

6 tháng 11 2016

Có a+b+c=2000 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2000}\)

Suy ra: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

               \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

                \(\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

                 \(\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)

                   \(\left(a+b\right)\left(\frac{c\left(a+b+c\right)+ab}{abc\left(a+b+c\right)}\right)=0\)

                       \(\left(a+b\right)\left(\frac{ac+bc+c^2+ab}{abc\left(a+b+c\right)}\right)=0\)

                         \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc\left(a+b+c\right)}=0\)

                          \(\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

  Mà a+b+c=2000

Với a+b=0 thì c=20000

Với b+c=0 thì a=2000

Với a+c=0 thì b=2000

Vậy trong 3 số a,b,c thì phải có 1 số bằng 2000

18 tháng 8 2017

P=\(\dfrac{2000a}{ab+2000a+2000}\)

P=\(\dfrac{a^2bc}{ab+a^2bc+abc}\)

P=\(\dfrac{a^2bc}{ab\left(1+ac+c\right)}\)

P=\(\dfrac{ac}{1+ac+c}\)

Ta có: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)

\(=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)

\(=\frac{1+b+bc}{bc+b+1}\)

\(=1\)

14 tháng 1 2018

Xét : a/ab+a+1 = a/ab+a+abc = 1/b+bc+1

        c/ac+c+1 = bc/abc+bc+b = bc/bc+b+1

=> S = 1+b+bc/bc+b+1 = 1

Vậy S = 1

Tk mk nha

4 tháng 9 2020

Biến đổi tương đương bất đẳng thức và chú ý đến \(x+y+z=1\)Ta được 

\(\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\) ( trừ cả hai vế với (x+y+z)^2 )

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)

\(\Leftrightarrow\frac{\left(x-z\right)^2}{z}+\frac{\left(y-x\right)^2}{x}+\frac{\left(z-y\right)^2}{y}\ge\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Leftrightarrow\left(x-y\right)^2\left(\frac{1}{x}-1\right)+\left(y-z\right)^2\left(\frac{1}{y}-1\right)+\left(z-x\right)^2\left(\frac{1}{z}-1\right)\ge0\)

Vì x + y + z = 1 nên 1/x; 1/y; 1/z > 1. Do đó bđt cuối cùng luôn đúng 

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=3\)

4 tháng 9 2020

Cách trâu bò :

Ta có : 

\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{â^2}\ge3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\Leftrightarrow\left(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\right):\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge3\)

\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge3\)

+) \(ab+ac+bc=abc\Leftrightarrow a+b+c=6-\left(ab+bc+ca\right)\)

\(\Leftrightarrow\hept{\begin{cases}6-\left(ab+bc+ca\right)>0\\\left(a+b+c\right)^2=\left[6-\left(ab+bc+ca\right)\right]^2\end{cases}}\)

Còn lại phân tích nốt ra rùi áp dụng bđt cauchy là ra . ( Mình cũng ko chắc biến đổi đoạn đầu đúng chưa , có gì bạn xem lại giùm mình sai bỏ qua )

5 tháng 3 2017

Câu 3

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a_2}{a_1}=\frac{a_3}{a_2}=\frac{a_4}{a_3}=......=\frac{a_{2001}}{a_{2000}}=\frac{a_1}{a_{2001}}=\frac{a_2+a_3+a_4+.....+a_{2001}+a_1}{a_1+a_2+a_3+.....+a_{2000}+a_{2001}}=1\)

=> a2 = a1

     a3 = a2 

     a4 = a3 

    .............

     a2001 = a2000

     a1 = a2001

=> a1 = a2 = a3 = ...... = a2001 

5 tháng 3 2017
  1. x=1 y=2 Ta thấy rằng nếu x >2 thì 2x^3>7 => x=1. Cứ tính rồi sẽ ra y