K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

mới lớp 7 a ới

Ta có: {\displaystyle \cos(C)={\frac {a^{2}+b^{2}-c^{2}}{2ab}}}

Từ đó, ta được

{\displaystyle \sin(C)={\sqrt {1-\cos ^{2}(C)}}={\frac {\sqrt {4a^{2}b^{2}-(a^{2}+b^{2}-c^{2})^{2}}}{2ab}}}

Dựa vào đường cao và sin của góc C. Ta có công thức tính diện tích tam giác ABC:

S{\displaystyle ={\frac {1}{2}}ab\sin(C)}

{\displaystyle ={\frac {1}{4}}{\sqrt {4a^{2}b^{2}-(a^{2}+b^{2}-c^{2})^{2}}}}

{\displaystyle ={\frac {1}{4}}{\sqrt {(2ab-(a^{2}+b^{2}-c^{2}))(2ab+(a^{2}+b^{2}-c^{2}))}}}

{\displaystyle ={\frac {1}{4}}{\sqrt {(c^{2}-(a-b)^{2})((a+b)^{2}-c^{2})}}}

{\displaystyle ={\frac {1}{4}}{\sqrt {(c-(a-b))((c+(a-b))((a+b)-c))((a+b)+c)}}}

{\displaystyle ={\sqrt {p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}.} (đpcm)

5 tháng 11 2016

a ) Khi \(a=b=c\)

\(\Rightarrow S=\frac{1}{4}\sqrt{\left(3a^2\right)^2-6a^4}=\frac{1}{4}\sqrt{3a^4}\)

\(\Rightarrow S=\frac{a^2\sqrt{3}}{4}\)

Vậy diện tích tam giác đều cạnh a là \(S=\frac{a^2\sqrt{3}}{4}.\)

b ) Khi \(a^2=b^2+c^2\)

\(\Rightarrow S=\frac{1}{4}\sqrt{\left(2a^2\right)^2-2\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow S=\frac{1}{4}\sqrt{2\left(a^4-b^4-c^4\right)}\)

Từ \(b^2+c^2=a^2\)

\(\Rightarrow b^4+c^4+2b^2c^2=a^4,\)ta tính ra :

\(S=\frac{1}{4}\sqrt{4b^2c^2}\) \(\Rightarrow S=\frac{2}{4}b.c\) \(\Rightarrow S=\frac{1}{2}bc\)

Vậy diện tích tam giác vuông thì bằng \(\frac{1}{2}\) tích 2 cạnh góc vuông .

 

19 tháng 11 2017

chuyên đề là tính các đại lượng hình học bằng cách lập phương trình nhé

19 tháng 11 2017

A B C H c b a x

hình, CH=x . Mọi người giải giúp mình với mình sắp học rùi

25 tháng 8 2016

CÓ: \(a^2+b^2=c^2.\)Nên ta có:
\(P=\frac{\left(a+b\right)\left(a+\sqrt{a^2+b^2}\right)\left(b+\sqrt{a^2+b^2}\right)}{ab\sqrt{a^2+b^2}}\)
\(=\frac{a+b}{\sqrt{a^2+b^2}}.\frac{a+\sqrt{a^2+b^2}}{a}.\frac{b+\sqrt{a^2+b^2}}{b}\)
\(=\left(\sqrt{\frac{a^2}{a^2+b^2}}+\sqrt{\frac{b^2}{a^2+b^2}}\right).\left(1+\sqrt{\frac{a^2+b^2}{a^2}}\right)\left(1+\sqrt{\frac{a^2+b^2}{a^2}}\right)\).
Đặt: \(x^2=\frac{a^2}{a^2+b^2};y^2=\frac{b^2}{a^2+b^2}\Rightarrow x^2+y^2=1\). Ta có:
\(P=\left(x+y\right)\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=x+y+\frac{1}{x}+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}+2\)\(\ge4\sqrt{x.y.\frac{1}{x}.\frac{1}{y}.\frac{x}{y}.\frac{y}{x}}+2=6.\)

Vậy GTNN của P = 6.Dấu bằng xảy ra khi x = y =1 hay tam giác ABC vuông cân.

25 tháng 8 2016

Min = 6