Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)mà a + b + c = 2019
\(\Rightarrow a=b=c=\frac{2019}{3}=673\)
\(\dfrac{6}{11}x=\dfrac{18}{5}z\) ⇒ \(\dfrac{18}{33}x=\dfrac{18}{5}z\) ⇒\(\dfrac{x}{33}=\dfrac{z}{5}\)
Áp dụng tc dãy tỉ số bằng nhau ta có \(\dfrac{x}{33}=\dfrac{z}{5}=\dfrac{z-x}{5-33}\) = \(\dfrac{-196}{-28}\)=7
⇒ \(x=7\times33=231\); z = 7\(\times\) 5 = 35;
y = \(\dfrac{6}{11}x:\dfrac{9}{2}=\dfrac{6}{11}\times231:\dfrac{9}{2}\) = 28
\(x+y+z=\) 231+28+35 = 294
Chọn b.294
Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b+c ≤ (c+2)+ (c+2) + c
<=> 1 ≤ 3c+ 4 <=> -3 ≤ 3c <=> -1≤ c
Dấu bằng xảy ra <=> a+b+c=1 và a = b +1 =c+2 <=> a = 1, b = 0, c = -1
KL: Gía trị nhỏ nhất của c = -1
Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b + c ≤ (c+2)+ (c+2) + c
\(\Leftrightarrow\) 1 ≤ 3c+ 4 \(\Leftrightarrow\) -3 ≤ 3c \(\Leftrightarrow\) -1≤ c
Dấu bằng xảy ra \(\Leftrightarrow\) a+b+c=1 và a = b +1 =c+2 \(\Leftrightarrow\) a = 1, b = 0, c = -1
KL: Gía trị nhỏ nhất của c = -1
13b=12c
nên b/12=c/13
=>a/25=b/24=c/26
Áp dụng tính chất củadãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{25}=\dfrac{b}{24}=\dfrac{c}{26}=\dfrac{a+b-c}{25+24-26}=\dfrac{40}{23}\)
Do đó: a=1000/23; c=960/23; c=1040/23