K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2015

Ta có:

B = 3 - 32 + 33 - 34 + ...... + 31999 - 32000

=> 3B = 32 - 33 + 34 - 35 + ...... + 32000 - 32001

=> 3B + B = 4B = 3 - 32001

=> 32001 = 3 - 4B

Vậy n = 2001

 

5 tháng 11 2021

C

5 tháng 11 2021

A

a: \(A=2019\cdot2021=2020^2-1\)

\(B=2020^2\)

Do đó: A<B

10 tháng 10 2021
Fhzhizuu8zìtcùbìgìvìg⁸fu7fdjhtvfghhhujfghfhgkffztdhcvvgoh. Gtvguvvhhvhvzcgctv
AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$

5 tháng 10 2023

1) \(B=1+3+3^2+...+3^{1999}+3^{2000}\)

\(3B=3\cdot\left(1+3+3^2+...+3^{2000}\right)\)

\(3B=3+3^2+...+3^{2001}\)

\(3B-B=3+3^2+3^3+...+3^{2001}-1-3-3^2-...-3^{2000}\)

\(2B=3^{2001}-1\)

\(B=\dfrac{3^{2001}-1}{2}\)

2) \(C=1+4+4^2+...+4^{100}\)

\(4C=4\cdot\left(1+4+4^2+...+4^{100}\right)\)

\(4C=4+4^2+4^3+...+4^{101}\)

\(4C-C=4+4^2+4^3+...+4^{201}-1-4-4^2-....-4^{100}\)

\(3C=4^{101}-1\)

\(C=\dfrac{4^{101}-1}{3}\)

5 tháng 10 2023

Còn D bạn.

20 tháng 2 2018

Đáp án cần chọn là: C

n=2001

**** cho mình rồi mình giải cụ thể cho

28 tháng 4 2015

B = 3 - 32 + 33 - ..... + 31999 - 32000

=> 3B = 32 - 33 + 34 - ..... + 32000 - 32001

=> 3B + B = 4B = 3 - 32001

=> 32001 = 3 - 4B

=> n = 2001