Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.....+\left(\frac{1}{2}\right)^{2014}+\left(\frac{1}{2}\right)^{2015}\)
\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)
Ta có: \(2B=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2013}}+\frac{1}{2^{2014}}\)
=>\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2013}}+\frac{1}{2^{2014}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\right)\)
=>\(B=1-\frac{1}{2^{2015}}<1\left(đpcm\right)\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2003}}+\frac{1}{2^{2004}}\)
\(B=2B-B=1-\frac{1}{2005}<1\)