K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2015

a/k=x/a

=>a.a=x.k

=>a2=kx

b/k=y/b

=>b.b=y.k

=>b2=yk

=>\(\frac{a^2}{b^2}=\frac{kx}{ky}=\frac{x}{y}\left(đpcm\right)\)

23 tháng 10 2019

Ta có:

\(\frac{a}{k}=\frac{x}{a}\Rightarrow a^2=k.x\) (1)

\(\frac{b}{k}=\frac{y}{b}\Rightarrow b^2=k.y\) (2)

Chia (1) cho (2) ta được:

\(\frac{a^2}{b^2}=\frac{k.x}{k.y}=\frac{x}{y}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{x}{y}\left(đpcm\right).\)

Chúc bạn học tốt!

24 tháng 9 2016

Ta có :

\(\begin{cases}\frac{a}{k}=\frac{x}{a}\\\frac{b}{k}=\frac{y}{b}\end{cases}\)

\(\Rightarrow\begin{cases}a^2=kx\\b^2=ky\end{cases}\)

Chia về theo vế 

\(\Rightarrow a^2:b^2=\left(kx\right):ky\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{kx}{ky}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{x}{y}\)

16 tháng 12 2015

Ta có

\(\frac{a}{k}=\frac{x}{a}<=>a^2=x.k\)

\(\frac{b}{k}=\frac{y}{b}<=>b^2=k.y\)

=>\(\frac{a^2}{b^2}=\frac{x.k}{k.y}=\frac{x}{y}\)

tick nha

16 tháng 12 2015

 

\(\frac{a}{k}=\frac{x}{a}\Leftrightarrow a^2=kx\)

\(\frac{b}{k}=\frac{y}{b}\Leftrightarrow b^2=ky\)

\(\frac{a^2}{b^2}=\frac{kx}{ky}=\frac{x}{y}\)

4 tháng 9 2016

Ta có: \(\frac{a}{k}=\frac{x}{a};\frac{b}{k}=\frac{y}{b}\)

=> a2 = x.k; b2 = y.k

=> \(\frac{a^2}{b^2}=\frac{x.k}{y.k}=\frac{x}{y}\left(đpcm\right)\)

4 tháng 9 2016

a/k = x/a   => a2 = kx (1)

b/k = y/b   => b2 = ky  (2)

chia (1) cho (2) có; 

a2/b2  =x/y

29 tháng 5 2015

\(\frac{a}{k}=\frac{x}{a}\Rightarrow a^2=k.x\)

\(\frac{b}{k}=\frac{y}{b}\Rightarrow b^2=y.k\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{k.x}{y.k}=\frac{x}{y}\Rightarrow\frac{a^2}{b^2}=\frac{x}{y}\left(đpcm\right)\)

9 tháng 8 2015

\(\frac{a}{k}=\frac{x}{a}\Rightarrow a^2=k.x\)

\(\frac{b}{k}=\frac{y}{b}\Rightarrow b^2=k.y\)

\(=\frac{a^2}{b^2}=\frac{k.x}{k.y}=\frac{x}{y}\text{ Vậy }\frac{a^2}{b^2}=\frac{x}{y}\)

9 tháng 8 2015

\(\frac{a}{k}=\frac{x}{a}\Rightarrow a^2=k.x\)

\(\frac{b}{k}=\frac{y}{b}\Rightarrow b^2=k.y\)

Thay vào vế trái ta có :

           \(\frac{a^2}{b^2}=\frac{kx}{ky}=\frac{x}{y}\)

Vậy VT = VP