Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi số đo của các goác lần lượt là x,y,z
Theo đề bài ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=180\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{180}{9}=20\)
=>\(\begin{cases}x=40\\y=60\\z=80\end{cases}\)
vì các góc của tam giác tỉ lệ vs 2,3,4 nen ế gọi các góc lần lượt là a,b,c thì a/2=b/3=c/4 vì a,b,c là 3 góc của tam giác nên a+b+c=180
áp dụng gì đó ko nhớ có
a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20
=> a/2=20 nên a=40cm
b/3=20 nên b=60cm
c/4=20 nên c=80cm
vậy 3 cạnh là 40cm,60cm và 80cm
Ta có: \(a^2+b^2=c^2+d^2\)
\(\Rightarrow a^2-c^2=d^2-b^2\)
\(\Rightarrow\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\left(1\right)\)
Lại có: \(a+b=c+d\)\(\Rightarrow a-c=d-b\)
Nếu a=b =>b=d
\(\Rightarrow a^{2016}+b^{2016}=c^{2016}+d^{2016}\) đúng
Nếu \(a\ne c\Rightarrow b\ne d\)
\(\Rightarrow a-c=d-b\ne0\)
Khi đó (1) trở thành:
\(a+c=b+d\)(\(a-c,d-b\ne0\) nên ta có thể đơn giản) (2)
Mà a+b=c+d (3)
Cộng theo vế của (2) và (3)
\(2a+b+c=b+c+2d\)
\(\Rightarrow2a=2d\Rightarrow a=d\Rightarrow b=c\)
Vì \(a=d;b=3\Rightarrow a^{2016}+b^{2016}=c^{2016}+d^{2016}\) đúng
Vậy ta luôn có \(a^{2016}+b^{2016}=c^{2016}+d^{2016}\)với điều kiện của đề
Ta có a^5-a luôn chia hết cho 6
suy ra a^5+...+d^5 -2016 chia hết cho 6
dpcm