Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)
\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c
Bài 2:
Ta có: \(a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(\Rightarrow a^3+b^3+3ab.\left(a+b\right)=-c^3\)
\(\Rightarrow a^3+b^3+3ab.\left(-c\right)=-c^3\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
(Còn nhiều cách nữa ,mình làm 1 cách nhé)
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
b,
Ta có:
\(\left(a+b+c\right)^3=0\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a^3+b^3+c^3-3.\left(-c\right)\left(-a\right)\left(-b\right)=0\)
Đặt \(a+b+c=3u;ab+bc+ca=3v^2;abc=w^3\)
BĐT \(\Leftrightarrow\) \(54u^3-54uv^2+9w^3\ge3v^2\)
\(\Leftrightarrow54u^3-63uv^2+9w^3\ge0\)
\(\Leftrightarrow9\left(w^3+3u^3-4uv^2\right)+27u\left(u^2-v^2\right)\ge0\)
Đúng theo BĐT Schur bậc 3: \(w^3+3u^3\ge4uv^2\) và BĐT quen thuộc: \(u^2\ge v^2\)
P/s: Ko chắc ạ..
1) Có: \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3-3abc=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
2)Có: \(a+b-c=0\)
\(\Leftrightarrow a+b=c\)
\(\Leftrightarrow\left(a+b\right)^3=c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3\)
\(\Leftrightarrow a^3+b^3+3abc=c^3\)
\(\Leftrightarrow a^3+b^3-c^3=-3abc\)
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=[\left(a+b\right)^3+c^3]-[3ab\left(a+b\right)+3abc]=\left(a+b+c\right)[\left(a+b\right)^2-\left(a+b\right)c+c^3]-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-3ab-ab-bc-ca\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Ta có : (a+b+c)(a2+b2+c2-ab-bc-ca)
=a3+ab2+ac2-a2b-abc-ca2+a2b+b3+bc2-ab2-b2c-abc+a2c+cb2+c3-abc-bc2-c2a
Trừ đi các hạng tử đồng dạng ta có kết quả :
=a3+b3+c3-3abc
Vậy : a3+b3+c3-3abc = (a+b+c)(a2+b2+c2-ab-bc-ca)
a +b +c=0
⇔\(\left(a+b+c\right)^3\)
⇔\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3a^2c+3ac^2+6abc=0\)
⇔\(a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3b^2c+3bc^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)-3abc=0\)
⇔ \(a^3+b^3+c^3+3ab\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)=3abc\)
Vì a+b+c= 0
⇒\(a^3+b^3+c^3=3abc\)
Chúc bạn học tốt!
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`