K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

  • TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
  • TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

b) Đề bài sai ^^

13 tháng 8 2020

Đặt \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=A\)

Ta có:\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

<=> \(\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)=0\)

<=> \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(b-c\right)\left(c-a\right)}+\frac{c}{\left(b-c\right)\left(a-b\right)}+\frac{a}{\left(b-c\right)\left(c-a\right)}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)\left(c-a\right)}+\frac{a}{\left(a-b\right)\left(b-c\right)}+\frac{b}{\left(a-b\right)\left(c-a\right)}+\frac{c}{\left(a-b\right)^2}=0\)

<=> \(A+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}+\frac{c+b}{\left(a-b\right)\left(c-a\right)}=0\)

<=> \(A+\frac{\left(a+b\right)\left(a-b\right)+\left(c-a\right)\left(c+a\right)+\left(c+b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

<=> \(A+\frac{a^2-b^2+c^2-a^2+b^2-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

<=> \(A=0\)

=> ....

6 tháng 11 2019

Đặt \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)

Ta có \(M.\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\)

\(=1+\frac{c}{a-b}.\frac{b^2-bc+ca-a^2}{ab}\)

\(=1+\frac{c}{a-b}.\frac{\left(b-a\right)\left(a+b-c\right)}{ab}=1+\frac{2c^2}{ab}\)

Tương tự : \(M.\frac{a}{b-c}=1+\frac{2a^2}{bc};M.\frac{b}{c-a}=1+\frac{2b^2}{ca}\)

Do vậy \(A=3+2.\frac{a^3+b^3+c^3}{abc}=9\left(do.a+b+c=0.thi.a^3+b^3+c^3=3abc\right)\)

13 tháng 7 2016

Ta có : \(\frac{a-\left(c-b\right)}{b-c}+\frac{b-\left(a-c\right)}{c-a}+\frac{c-\left(b-a\right)}{a-b}=3\)

\(\Leftrightarrow\frac{a+\left(b-c\right)}{b-c}-1+\frac{b+\left(c-a\right)}{c-a}-1+\frac{c+\left(a-b\right)}{a-b}-1=0\)

\(\Leftrightarrow\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{a+c}{\left(b-c\right)\left(a-b\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a^2-b^2+c^2-a^2+b^2-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

13 tháng 7 2016

Từ gt ta có : \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)0

Từ đó suy ra điều phải chứng minh

28 tháng 3 2019

Ta có

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\frac{a}{b-c}=\frac{b}{a-c}+\frac{c}{b-a}=\frac{b^2-ab+ac-c^2}{\left(a-c\right)\left(b-a\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

Tương tự

\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-bc+ab-a^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

\(\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+bc-b^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=\frac{b^2-ab+ac-c^2+c^2-bc+ab-a^2+a^2-ac+bc-b^2}{\left(a-c\right)\left(b-a\right)\left(a-b\right)}\)

=0 ( ĐPCM)