\(\frac{a\left(c-b\right)}{b-c}+\frac{b\left(a-c\right)}{c-a}+\frac{c\left(b-a\right)}{a-b}=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2016

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}\)

\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}\)

\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}\)

Cộng theo vế ba đẳng trên được dpcm.

bn làm đúng rồi đó

28 tháng 3 2019

Ta có

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\frac{a}{b-c}=\frac{b}{a-c}+\frac{c}{b-a}=\frac{b^2-ab+ac-c^2}{\left(a-c\right)\left(b-a\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

Tương tự

\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-bc+ab-a^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

\(\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+bc-b^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=\frac{b^2-ab+ac-c^2+c^2-bc+ab-a^2+a^2-ac+bc-b^2}{\left(a-c\right)\left(b-a\right)\left(a-b\right)}\)

=0 ( ĐPCM)

13 tháng 7 2016

Ta có : \(\frac{a-\left(c-b\right)}{b-c}+\frac{b-\left(a-c\right)}{c-a}+\frac{c-\left(b-a\right)}{a-b}=3\)

\(\Leftrightarrow\frac{a+\left(b-c\right)}{b-c}-1+\frac{b+\left(c-a\right)}{c-a}-1+\frac{c+\left(a-b\right)}{a-b}-1=0\)

\(\Leftrightarrow\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{a+c}{\left(b-c\right)\left(a-b\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a^2-b^2+c^2-a^2+b^2-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

13 tháng 7 2016

Từ gt ta có : \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)0

Từ đó suy ra điều phải chứng minh