K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

b: Giả sử AB<AC

Đặt HB=x; HC=y

Theo đề, ta có: x+y=15 và xy=36

=>x=3 và y=12

=>AB=căn 3*15=3căn 5cm; AC=căn 12*15=6*căn 5(cm)

AM=AH^2/AB=6^2/3*căn 5=12/căn 5(cm)

AN=AH^2/AC=6^2/6căn 5=6/căn 5(cm)

S AMHN=AM*AN=72/5cm2

Sửa đề: HM vuông góc với AB

a)

Sửa đề: Chứng minh \(AM\cdot AB=AN\cdot AC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB, ta được: 

\(AM\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được: 

\(AN\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)(đpcm)

a: Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

Do đó: AMHN là hình chữ nhật

12 tháng 12 2023

a: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

b: Ta có: AMHN là hình chữ nhật

=>AM//HN và AM=HN

Ta có: AM//HN

N\(\in\)HK

Do đó: AM//KN

Ta có: AM=HN

HN=KN

Do đó: AM=KN

Xét tứ giác AMNK có

AM//NK

AM=NK

Do đó: AMNK là hình bình hành

12 tháng 12 2023

Cho mình xin hình được không ạ

a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABC}\) chung

Do đó; ΔAHB\(\sim\)ΔCAB

Suy ra: AB/CB=HB/AB

hay \(AB^2=HB\cdot BC\)

b: BC=25cm

BH=225:25=9(cm)

CH=25-9=16(cm)

c: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)