K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 8 2021

\(a^2+ab+b^2=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)

Tương tự, ta có:

\(M\ge\dfrac{\sqrt{3}}{2}\left(a+b\right)+\dfrac{\sqrt{3}}{2}\left(b+c\right)+\dfrac{\sqrt{3}}{2}\left(c+a\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

DD
25 tháng 8 2021

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}\ge\frac{0-1}{2}=-\frac{1}{2}\)

Dấu \(=\)khi \(\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2=1\end{cases}}\), chẳng hạn \(c=0,a=-b=\sqrt{\frac{1}{2}}\)

25 tháng 8 2021

Ta có : \(1\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1+2\left(ab+bc+ca\right)}{3}\)

\(< =>ab+bc+ca\le1\)

Dấu "=" tự tìm nhaaaaa

14 tháng 2 2020

Bất đẳng thức cần chứng minh tương đương với : \(\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)

\(\Leftrightarrow1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\le2\)

\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)( * )

cần chứng minh BĐT (*)

Thật vậy, Áp dụng BĐT Cô-si dạng Engel, ta có :

\(\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=1\)

Vậy BĐT đã được chứng minh 

Dấu "=" xảy ra \(\Leftrightarrow\)a = b = c = 1

23 tháng 5 2022

a2+b2+c2=4−abc≤4

Smax=4 khi 1 trong 3 số bằng 0

4=abc+a2+b2+c2≥abc+33√(abc)2

Đặt 3√abc=x>0⇒x3+3x2−4≤0

⇔(x−1)(x+2)2≤0⇒x≤1

⇒abc≤1⇒S=4−abc≥3

Dấu "=" xảy ra khi a=b=c=1

23 tháng 5 2022

Min là hoán vị a=b=0 c=2 ; a=c=0 b=2 ; b=c=0 a=2 mà :vv

mà thôi Min làm đr còn max 

TKS

9 tháng 12 2018

2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)

Áp dụng BĐT AM-GM ta có:

\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)

\(S=\frac{17}{4}\Leftrightarrow a=4\)

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

9 tháng 12 2018

kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?

\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)

\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)

Dấu "=" xảy ra khi a = 4

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

27 tháng 5 2020

Không hiểu sao BĐT dạo này được cập nhật lên khá nhiều,thôi thì làm theo bản năng vậy :))

Do \(a^2+b^2+c^2+abc=4\) nên ta đặt được ẩn phụ dưới dạng 

\(a=\frac{2x}{\sqrt{\left(x+y\right)\left(x+z\right)}};b=\frac{2y}{\sqrt{\left(y+z\right)\left(y+x\right)}};c=\frac{2z}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)

Khi đó BĐT cần chứng minh tương đương với:

\(\Sigma\frac{2xy}{\left(x+y\right)\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{4xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}+1\)

Theo AM - GM  thì ta dễ dàng có:

\(\frac{2xy}{\left(x+y\right)\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{xy}{x+y}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)

\(\Rightarrow LHS\le\Sigma\frac{xy}{\left(x+y\right)\left(x+z\right)}+\Sigma\frac{xy}{\left(x+y\right)\left(y+z\right)}\)

\(=\Sigma\frac{xy}{\left(x+y\right)\left(x+z\right)}+\Sigma\frac{zx}{\left(x+y\right)\left(x+z\right)}\)

\(=\Sigma\frac{x\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}=1+\frac{4xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

BĐT được chứng minh

11 tháng 6 2020

Cách khác :)))

Theo nguyên lý Dirichlet thì trong 3 số \(a-1;b-1;c-1\) có ít nhất 2 số cùng dấu

Giả sử đó là \(a-1;b-1\)

Khi đó:\(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\Leftrightarrow abc+c\ge ac+bc\)

Vì vậy \(ab+bc+ca-abc\le ab+bc+ca+c-ac-bc=ab+c\)

Ta sẽ chứng minh \(ab+c\le2\)

Thật vậy !

\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\Leftrightarrow4-c^2\ge ab\left(c+2\right)\)

\(\Leftrightarrow ab+c\le2\left(đpcm\right)\)

Ta sẽ chứng minh BĐT sau: a^2+b^2+c^2>=ab+ac+bc với mọi a,b,c

\(a^2+b^2+c^2>=ab+bc+ac\)

=>\(2a^2+2b^2+2c^2>=2ab+2bc+2ac\)

=>\(a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2>=0\)

=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2>=0\)(luôn đúng)

a: ab+ac+bc>=3

mà a^2+b^2+c^2>=ab+ac+bc(CMT)

nên a^2+b^2+c^2>=3

Dấu = xảy ra khi a=b=c=1

Khi a=b=c=1 thì A=1+1+1+10=13

b: a^2+b^2+c^2<=8

Dấu = xảy ra khi \(a^2=b^2=c^2=\dfrac{8}{3}\)

=>\(a=b=c=\dfrac{2\sqrt{2}}{\sqrt{3}}=\dfrac{2\sqrt{6}}{3}\)

Khi \(a=b=c=\dfrac{2\sqrt{6}}{3}\) thì \(B=\dfrac{2\sqrt{6}}{3}\cdot3-5=2\sqrt{6}-5\)