Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)
\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)
\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)
\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
nhận được thông báo thì kéo chuột xuống xem bài giải của t ở phần duyệt bài nhé
Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)
\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)
Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)
"="<=>a=b=c=3
Bài này hay:)
c = min {a,b,c}. Đặt
\(a-c=x;b-c=y\Rightarrow x,y\ge0\) và x + y = a + b - 2c \(=3-3c\le3\)
\(\Rightarrow a-b=x-y;c=\frac{3-x-y}{3}\)
\(a=x+c=x+\frac{3-x-y}{3}=\frac{2x-y+3}{3}\)
\(b=y+c=\frac{2y-x+3}{3}\)
Như vậy: \(K=\sqrt{4\left(2x-y+3\right)+y^2}+\sqrt{4\left(2y-x+3\right)+x^2}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)
\(=\sqrt{y^2-4y+8x+12}+\sqrt{x^2-4x+8y+12}+\sqrt{4\left(3-x-y\right)+\left(x-y\right)^2}\)
Giờ em đang bận, tối em làm tiếp!
\(12a+\left(b-c\right)^2=4a\left(a+b+c\right)+b^2-2bc+c^2\)
\(=4a^2+b^2+c^2+4ab+4ac+2bc-4bc\)
\(=\left(2a+b+c\right)^2-4bc\le\left(2a+b+c\right)^2\)
\(\Rightarrow\sqrt{12a+\left(b-c\right)^2}\le2a+b+c\)
Tương tự: \(\sqrt{12b+\left(a-c\right)^2}\le a+2b+c\); \(\sqrt{12c+\left(a-b\right)^2}\le a+b+2c\)
Cộng vế với vế:
\(K\le4\left(a+b+c\right)=12\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị
Ta sẽ chứng minh: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-3\left(a^2+b^2+c^2\right)\ge0\) (1)
Áp dụng BĐT Cauchy-Schwarz dạng Engel,ta có: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{a^2+b^2+c^2}{a+b+c}\) (2)
Mặt khác,ta cũng có: \(3\left(a^2+b^2+c^2\right)=\frac{3\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{a+b+c}\)
Ta cần chứng minh \(a^2+b^2+c^2-3\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge0\) (3)
Thay a + b + c = 0 vào (1),ta cần chứng minh: \(a^2+b^2+c^2\ge0\)(luôn đúng) (4)
Từ (4) suy ra (3) đúng suy ra (2) đúng suy ra đcpm
Thiếu chỗ câu cuối: "Từ (4) suy ra (3) đúng suy ra (2) luôn đúng suy ra (1) đúng.Từ đó suy ra đpcm"