K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

bài này trong sách nâng cao và phát triển à

5 tháng 10 2017

Vì là trong sách nên có lẽ đã lm đc câu a nên ta sẽ áp dụng:

b) 2.( ab+bc+ca) = 2( a^2.b^2+ b^2.c^2+c^2.a^2+ 2.b^2.a.c + 2a^2.b.c+ 2c^2.a.b)

= 2. [ a^2.b^2+b^2.c^2+c^2.a^2+ 2abc ( a+b+c)]

= 2. (a^2.b^2 + b^2.c^2 + c^2.a^2 )  ( Vì a+b+c = 0)

= a^4 + b^4 + c^4 ( theo câu a nha)

15 tháng 12 2017

Giải ra kĩ một chút . Xin cảm ơn 

26 tháng 12 2017

Với a,b,c>0 .

áp dụng bđt cosi,ta có:

b.c/a+c.a/b>_2c (1)

c.a/b+a.b/c>_2a (2)

a.b/c+b.c/a>_2b ((3)

Cộng (1),,(2),,(3) vế theo vế ,ta được:

2.(b.c/a+c.a/b+a.b/c)>_ 2.(a+b+c)

=>b.c/a+c.a/b+a.b/c>_ a+b+c (đpcm)

20 tháng 3 2018

dự đoán của Thần thánh

\(\frac{ab}{a^2+b^2}=\frac{a^2}{2a^2}=\frac{1}{2}\)

\(VT=\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)

\(p=\frac{ab}{a^2+b^2}+....+\frac{ca}{c^2+a^2};A=\frac{1}{4}\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right)\)

áp dụng BDT cô si ta có

\(\frac{ab}{a^2+b^2}+\frac{\left(a^2+b^2\right)}{\frac{4}{9}}\ge2\sqrt{\frac{ab}{\frac{4}{9}}}=\frac{2}{\frac{2}{3}}\sqrt{ab}=3\sqrt{ab}\)

tương tự với các BDT còn lại suy ra

\(p+\frac{9}{4}\left(2a^2+2b^2+2c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

\(P+\frac{9}{2}\left(a^2+b^2+c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

áp dụng BDT cô si ta có

\(a^2+\frac{1}{9}\ge2\sqrt{\frac{a^2}{9}}=\frac{2a}{3}\)

tương tự với b^2+c^2 ta được

\(a^2+b^2+c^2+\frac{1}{3}\ge\frac{2}{3}\left(a+b+c\right)=\frac{2}{3}\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\) 

" thay 1/3 vào ta được

\(p+\frac{3}{2}\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

áp dụng BDT cô si dạng " Rei " " luôn đúng với những bài ngược dấu "

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{abc}}=3\sqrt[3]{abc}\)

mà \(a+b+c\ge3\sqrt[3]{abc}\) 

thay a+b+c=1 vào ta được

\(P+\frac{3}{2}\ge3\Leftrightarrow P\ge\frac{6}{2}-\frac{3}{2}=\frac{3}{2}\) " 1 "

bây giờ tính nốt con \(A=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

áp dụng BDT \(\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{a+b+c}\)

\(A=\frac{9}{4}.\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{4}\left(\frac{1}{a+b+c}\right)\)

mà a+b+C=1 suy ra

\(A\ge\frac{9}{4}\) "2"

từ 1 và 2 suy ra

\(VT=P+A\ge\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)

" đúng với dự đoán của thần thánh "

30 tháng 10 2015

Nhân mẫu số vào ta được :

ac + ad + bd + bc +ab - ac -bd + dc = ab + bc + cd +da

=> biểu thức trên có giá trị rút gọn là abcd

16 tháng 8 2020

gt <=>     \(a^2+b^2+c^2-ab-bc-ca=0\)

<=>     \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

<=>   \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

<=>    \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)        (1)

TA LUÔN CÓ:     \(\left(a-b\right)^2;\left(b-c\right)^2;\left(c-a\right)^2\ge0\forall a;b;c\)

=>     \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)        (2)

TỪ (1) VÀ (2) =>    DẤU "=" SẼ XẢY RA <=>     \(\left(a-b\right)^2=\left(b-c\right)^2=\left(c-a\right)^2=0\)

<=>     \(a=b=c\)

VẬY TA CÓ ĐPCM.

16 tháng 8 2020

a2 + b2 + c2 = ab + bc + ca

<=> 2( a2 + b2 + c2 ) = 2( ab + bc + ca )

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) = 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0 (*)

Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(c-a\right)^2\end{cases}}\ge0\forall a,b,c\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Đẳng thức xảy ra ( tức là (*) xảy ra ) <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow a=b=c\)

=> ĐPCM

16 tháng 7 2016

Ta có : \(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

\(b^2+1=b^2+ab+bc+ac=b\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(b+c\right)\)

\(c^2+1=c^2+ab+bc+ac=b\left(a+c\right)+c\left(a+c\right)=\left(b+c\right)\left(a+c\right)\)

\(\Rightarrow A=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left(a+b\right)^2.\left(b+c\right)^2.\left(c+a\right)^2=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

là bình phương của một số hữu tỉ.

10 tháng 3 2023

Biểu thức đâu vậy bạn?