Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(J=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{2\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\ge6\)
\(\Rightarrow J_{min}=6\) khi \(a=b=\frac{1}{2}\)
\(\sqrt{a+b}.\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)}\)
\(=\sqrt{2+\frac{a}{b}+\frac{b}{a}}\ge\sqrt{2+2\sqrt{\frac{a}{b}.\frac{b}{a}}}=\sqrt{2+2}=2\)
Dấu bằng xảy ra khi a = b.
\(P=\left(\frac{a}{b}+\frac{b}{a}\right)^2-\left(\frac{a}{b}+\frac{b}{a}\right)-1\)
Đặt \(t=\frac{a}{b}+\frac{b}{a}\Rightarrow t\in(-\infty;-2]\cup[2;+\infty)\)
\(f\left(t\right)=t^2-t-1\)
\(-\frac{b}{2a}=\frac{1}{2}\notin(-\infty;-2]\cup[2;+\infty)\)
\(f\left(-2\right)=5\) ; \(f\left(2\right)=1\)
\(\Rightarrow P_{min}=1\) khi \(t=2\Leftrightarrow\frac{a}{b}+\frac{b}{a}=2\Leftrightarrow a=b\)
Áp dụng bất đẳng thức Bunhiacopxki :
\(\left(1^2+4^2\right)\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)
\(\Leftrightarrow17\cdot\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)
\(\Leftrightarrow\sqrt{17}\cdot\sqrt{a^2+\frac{1}{b^2}}\ge a+\frac{4}{b}\)
Tương tự ta có :
\(\sqrt{17}\cdot\sqrt{b^2+\frac{1}{c^2}}\ge b+\frac{4}{c}\)
\(\sqrt{17}\cdot\sqrt{c^2+\frac{1}{a^2}}\ge c+\frac{4}{a}\)
Cộng theo vế của 3 bđt ta được :
\(\sqrt{17}\cdot\left(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\right)\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
\(\Leftrightarrow\sqrt{17}\cdot A\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
Áp dụng bất đẳng thức Cô-si :
\(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
\(=16a+\frac{4}{a}+16b+\frac{4}{b}+16c+\frac{4}{c}-15a-15b-15c\)
\(\ge2\sqrt{\frac{4\cdot16a}{a}}+2\sqrt{\frac{4\cdot16b}{b}}+2\sqrt{\frac{4\cdot16c}{c}}-15\left(a+b+c\right)\)
\(\ge16+16+16-15\cdot\frac{3}{2}=\frac{51}{2}\)
Do đó : \(\sqrt{17}\cdot A\ge\frac{51}{2}\)
\(\Leftrightarrow A\ge\frac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)
Bạn tham khảo:
Câu hỏi của khoimzx - Toán lớp 9 | Học trực tuyến
\(\frac{a^3}{\left(1-a\right)^2}+\frac{1-a}{8}+\frac{1-a}{8}\ge3\sqrt[3]{\frac{a^3}{\left(1-a\right)^2}.\frac{\left(1-a\right)}{8}.\frac{1-a}{8}}=\frac{3a}{4}\)
Suy ra \(\frac{a^3}{1-a^2}\ge\frac{3a}{4}-\frac{\left(1-a\right)}{4}=\frac{4a-1}{4}\)
Tương tự hai BĐT còn lại rồi cộng theo vế:
\(A\ge\frac{4\left(a+b+c\right)-3}{4}=\frac{1}{4}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
\(M=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)
\(\Rightarrow M\ge2\sqrt{\frac{a+b}{a+b}}+3=5\)
\(\Rightarrow M_{min}=5\) khi \(a=b=\frac{1}{2}\)