Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)
\(\Rightarrow M\ge2\sqrt{\frac{a+b}{a+b}}+3=5\)
\(\Rightarrow M_{min}=5\) khi \(a=b=\frac{1}{2}\)
\(\sqrt{a+b}.\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)}\)
\(=\sqrt{2+\frac{a}{b}+\frac{b}{a}}\ge\sqrt{2+2\sqrt{\frac{a}{b}.\frac{b}{a}}}=\sqrt{2+2}=2\)
Dấu bằng xảy ra khi a = b.
\(P=\left(\frac{a}{b}+\frac{b}{a}\right)^2-\left(\frac{a}{b}+\frac{b}{a}\right)-1\)
Đặt \(t=\frac{a}{b}+\frac{b}{a}\Rightarrow t\in(-\infty;-2]\cup[2;+\infty)\)
\(f\left(t\right)=t^2-t-1\)
\(-\frac{b}{2a}=\frac{1}{2}\notin(-\infty;-2]\cup[2;+\infty)\)
\(f\left(-2\right)=5\) ; \(f\left(2\right)=1\)
\(\Rightarrow P_{min}=1\) khi \(t=2\Leftrightarrow\frac{a}{b}+\frac{b}{a}=2\Leftrightarrow a=b\)
\(A\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(A\ge\frac{1}{a^2+b^2+c^2}+\frac{4}{2ab+2ac+2bc}+\frac{7}{ab+bc+ca}\)
\(A\ge\frac{\left(1+2\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}\)
\(A\ge\frac{9}{\left(a+b+c\right)^2}+\frac{21}{\left(a+b+c\right)^2}=30\)
\(A_{min}=30\) khi \(a=b=c=\frac{1}{3}\)
Câu 2)
Ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{\left(a+1\right)b+a+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{ab+b+a+1}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{ab+2}\ge\frac{4}{3}\)
\(\Leftrightarrow9\ge4\left(ab+2\right)\)
\(\Rightarrow9\ge4ab+8\)
\(\Rightarrow1\ge4ab\)
Do \(a+b=1\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow a^2+2ab+b^2\ge4ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (đpcm )
Câu 3)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Mà \(a+b+c=1\)
\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)
\(\Rightarrow a+b+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Áp dụng bất đẳng thức Cô-si
\(\Rightarrow\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc}\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều này luôn luôn đúng)
\(\Rightarrow\) ĐPCM
Lời giải:
Ta có:
$a^2+b^2+c^2+ab+bc+ac=\frac{6(a^2+b^2+c^2+ab+bc+ac)}{6}=\frac{4(a+b+c)^2+(a-b)^2+(b-c)^2+(c-a)^2}{6}$
$\geq \frac{(a-b)^2+(b-c)^2+(c-a)^2}{6}$
$\Rightarrow P\geq \frac{(a-b)^2+(b-c)^2+(c-a)^2}{6}.\left[\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}\right]$
Đặt $a-b=m, b-c=n$ thì $a-c=m+n$
Khi đó:
$6P\geq [m^2+n^2+(m+n)^2]\left[\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{(m+n)^2}\right]$
Áp dụng BĐT AM-GM và Cauchy-Schwarz:
$[m^2+n^2+(m+n)^2]\left[\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{(m+n)^2}\right]$
$\geq [\frac{(m+n)^2}{2}+(m+n)^2]\left[\frac{1}{2}(\frac{1}{m}+\frac{1}{n})^2+\frac{1}{(m+n)^2}\right]$
$\geq \frac{3}{2}.(m+n)^2\left[\frac{8}{(m+n)^2}+\frac{1}{(m+n)^2}\right]$
$=\frac{3}{2}(m+n)^2.\frac{9}{(m+n)^2}=\frac{27}{2}$
$\Rightarrow 6P\geq \frac{27}{2}$
$\Rightarrow P\geq \frac{9}{4}$
Vậy GTNN của $P$ là $\frac{9}{4}$.
\(A=\frac{19}{ab}+\frac{6}{a^2+b^2}+2018\left(a^4+b^4\right)\)
\(=6\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{16}{ab}+2018\left(a^4+b^4\right)\)
\(\ge\frac{24}{\left(a+b\right)^2}+\frac{64}{\left(a+b\right)^2}+\frac{2018\left(a+b\right)^4}{8}=24+64+\frac{2018}{8}=\frac{1361}{4}\)
Vậy GTNN của A là \(\frac{1361}{4}\) khi \(a=b=\frac{1}{2}\)
\(J=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{2\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\ge6\)
\(\Rightarrow J_{min}=6\) khi \(a=b=\frac{1}{2}\)