Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t.c dtsbn:
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\\ \Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
a/b=c/d
suy ra ad =bc suy ra ad+bd=bc+bd suy ra d(a+b)=b(c+d) suy ra a+b/b=c+d/d
vậy cách làm
bài này thế
nào vậy
mình ko
có hiểu lắm
Cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng \(\frac{a}{a-b}=\frac{c}{c-d}\)
Có \(\frac{a}{a-b}=\frac{c}{c-d}\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a}-\frac{b}{a}=\frac{c}{c}-\frac{d}{c}\Leftrightarrow1-\frac{b}{a}=1-\frac{d}{c}\)
\(\Rightarrow\frac{b}{a}=\frac{d}{c}hay\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
Đề bài cho \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow b=c.\) Không thể \(ad=bc\Rightarrow\) Đề sai
Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)
\(\Rightarrow a=kb,c=kd\)
Xét: \(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
\(\frac{c}{c-d}=\frac{kd}{kd-d}=\frac{kd}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{a-b}=\frac{c}{c-d}\)
Cách 1 :\(\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=\frac{a^2}{b^2}=\frac{ac}{bd}\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\left(2\right)\)
Từ (1) và (2),ta có đpcm.
Cách 2 : Đặt \(\frac{a}{b}=\frac{c}{d}=k\)thì a = bk ; c = dk.Ta có :
\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\left(1\right)\); \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2),ta có đpcm.
Sorry !Mình chỉ biết 2 cách thôi !
Cách 1:
\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
=> \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
=> Đpcm
Cách 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> a = bk và c = dk
=> \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{b^2.\left(k-1\right)^2}{d^2.\left(k-1\right)^2}=\frac{b^2}{d^2}\)
=> \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
=> \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)(Vì cùng bằng \(\frac{b^2}{d^2}\))
=> Đpcm
Cách 1 :
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => a = bk ; c = dk
Ta có :
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\frac{b^2.\left(k-1\right)^2}{d^2.\left(k-1\right)^2}=\frac{b^2}{d^2}\) (1)
và \(\frac{ab}{cd}=\frac{\left(bk\right)b}{\left(dk\right)d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) => đpcm
Cách 2 :
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}\)
\(\Leftrightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Cách 1:
Ta xét tích a(c-d) và c(a-b)
Ta có: a(c-d)=ac-ad (1)
c(a-b)=ac-bc(2)
Ta lại có \(\dfrac{a}{c}=\dfrac{c}{d}\)=>ad=bc (3)
Từ (1), (2), (3) ta có a(c-d)=c(a-d). Do đó \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Cách 2:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)=k thì a=bk, c=dk.
Xét \(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)
Xét \(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)
Từ (1) và (2)=> \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Cách 3: Ta có
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)
Aps dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a-b}{c-d}\)
=>\(\dfrac{a}{c}=\dfrac{a-b}{c-d}=>\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Leftrightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\)
\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\)
\(\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
hay \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)(đpcm)
Cách 1:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Cách 2: