K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2018

Ta có:

\(2bd=c\left(b+d\right)\)

\(\Rightarrow\left(a+c\right).d=bc+cd\)

\(\Rightarrow ad+cd=bc+cd\)

\(\Rightarrow ad=bc\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

30 tháng 10 2018

Giúp mik nha

😁😁😁😁😁

27 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

27 tháng 8 2017

2bd = c(b+d)

=> (a+c)d=c(b+d)

=>ad+cd=bc+cd

=>ad=bc

=> \(\frac{a}{b}=\frac{c}{d}\)

27 tháng 7 2016

Đặt a +c vào 2bd ta có

(a + c)d = c(b + d)

=> ad + cd = cb + cd

=> ad = cb

=> \(\frac{a}{b}=\frac{c}{d}\)

27 tháng 7 2016

Đặt a +c vào 2bd ta có

(a + c)d = c(b + d)

=> ad + cd = cb + cd

=> ad = cb

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)

19 tháng 6 2019

Ta có: a + c = 2b

=> d(a + c) = 2bd

mà c(b + d) = 2bd

=> d(a + c) = c(b + d)

=> ad + cd = bc + cd

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\)

19 tháng 6 2019

Ta có: 2bd = c(b + d)

Mà: a + c = 2b

=> (a + c)d = c(b + d)

=> ad + cd = cb + cd

=> ab = cd

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\) (đpcm0

30 tháng 1 2017

a + c  =2b ( 1 )

2bd = c(b+d) ( 2)

từ (1) và (2) ta được:

( a+ c ) .d = c.( b + d )

theo tính chất phân phối ta có"

ad + cd = cb + cd

=> ad = cb => a/b = c/d

k mknhes

24 tháng 8 2021

\(a+c=2b\) (*)

\(2bd=c\left(b+d\right)\)(**)

Thế (*) vào (**)

\(\left(a+c\right)d=c\left(b+d\right)\)

Theo tính chất phân phối ta có:

\(ad+cd=cb+cd\)

\(\Leftrightarrow ad=cb\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

9 tháng 10 2015

Ta có: 2bd=c.(b+d)

Mà a+c=2b

=>d.(a+c)=c.(b+d)

=>\(\frac{c}{d}=\frac{a+c}{b+d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)

\(=>\frac{a}{b}=\frac{c}{d}\)

26 tháng 12 2017

hau ak