Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có \(`\left\{\begin{matrix} \frac{a}{a'}+\frac{b'}{b}=1\\ \frac{b}{b'}+\frac{c'}{c}=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} ab+a'b'=a'b\\ bc+b'c'=b'c\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} ab=a'b-a'b'\\ b'c'=b'c-bc\end{matrix}\right.\Rightarrow \left\{\begin{matrix} abc=a'bc-a'b'c\\ a'b'c'=a'b'c-a'bc\end{matrix}\right.\)
\(\Rightarrow abc+a'b'c'=0\)
Do đó ta có đpcm.
a) Xét 2 \(\Delta\) \(ABC\) và \(A'B'C'\) có:
\(AB=A'B'\left(gt\right)\)
\(\widehat{A}=\widehat{A'}\left(gt\right)\)
\(AC=A'C'\left(gt\right)\)
=> \(\Delta ABC=\Delta A'B'C'\left(c-g-c\right).\)
b) Xét 2 \(\Delta\) \(AMC\) và \(A'M'C'\) có:
\(AM=A'M'\left(gt\right)\)
\(\widehat{A}=\widehat{A'}\left(gt\right)\)
\(AC=A'C'\left(gt\right)\)
=> \(\Delta AMC=\Delta A'M'C'\left(c-g-c\right).\)
=> \(\widehat{AMC}=\widehat{A'M'C'}\) (2 góc tương ứng)
c) Ta có:
\(\left\{{}\begin{matrix}A'M'+B'M'=A'B'\\AM+BM=AB\end{matrix}\right.\)
Mà \(AM=A'M'\left(gt\right),AB=A'B'\left(gt\right)\)
=> \(BM=B'M'.\)
d) Vì \(\Delta ABC=\Delta A'B'C'\left(cmt\right)\)
=> \(\widehat{B}=\widehat{B'}\) (2 góc tương ứng)
Xét 2 \(\Delta\) \(MBE\) và \(M'B'E'\) có:
\(MB=M'B'\left(cmt\right)\)
\(\widehat{B}=\widehat{B'}\left(cmt\right)\)
\(BE=B'E'\left(gt\right)\)
=> \(\Delta MBE=\Delta M'B'E'\left(c-g-c\right).\)
=> \(ME=M'E'\) (2 cạnh tương ứng) (đpcm).
Chúc bạn học tốt!
Xét ΔABC và ΔA'B'C' có
AB=A'B'
AC=A'C'
BC=B'C'
Do đó: ΔABC=ΔA'B'C'
Câu 3:
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
=>\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
ta có BM=\(\frac{1}{3}\)BC
\(\Rightarrow\)MC=\(\frac{2}{3}\)BC
mà BC=B'C'\(\Rightarrow\)MC=M'C'
Xét 2 tam giác ACM và tam giác A'C'M'
có AC=A'C'(tam giác ABC=tam giác A'B'C')
MC=M'C'
\(\widehat{C}\)=\(\widehat{C'}\)(tam giác ABC=tam giác A'B'C')
\(\Rightarrow\)Tam giác ACM =tam giác A'C'M' (cạnh . góc . cạnh)
\(\Rightarrow\)AM=A'M'(cặp cạnh tương ứng)
Xét △ABC có:
^A + ^B + ^C = 180o (tổng ba góc của tam giác)
Xét △A'B'C' có:
^A' + ^B' + ^C' = 180o (tổng ba góc của tam giác)
Mà ^A = ^A' (gt)
^B = ^B' (gt)
⇒ ^C = ^C' (đpcm)
Ta có hình vẽ:
a/ Xét tam giác ABC và tam giác A'B'C' có:
AB = A'B' (GT)
góc A = góc A' (GT)
AC = A'C' (GT)
=> tam giác ABC = tam giác A'B'C'.
b/ Ta có: tam giác ABC = tam giác A'B'C' (cmt)
=> BC = B'C'.
Mà M và M' lần lượt là trung điểm của BC và B'C'
=> CM = C'M'.
c/ Ta có: tam giác ABC = tam giác A'B'C'
Mà AM và A'M' lần lượt là trung tuyến của hai tam giác ABC và A'B'C'
=> AM = A'M'.
Ta có: aa′+b′b=1⇔ab+a′b′a′b=1⇔ab+a′b′=a′b⇔abc+a′b′c=a′bc(1)aa′+b′b=1⇔ab+a′b′a′b=1⇔ab+a′b′=a′b⇔abc+a′b′c=a′bc(1)
Lại có: bb′+c′c=1⇔bc+b′c′b′c=1⇔bc+b′c′=b′c⇔a′bc+a′b′c′=a′b′c(2)bb′+c′c=1⇔bc+b′c′b′c=1⇔bc+b′c′=b′c⇔a′bc+a′b′c′=a′b′c(2)
Từ (1) và (2) => abc+a′b′c+a′bc+a′b′c′=a′bc+a′b′cabc+a′b′c+a′bc+a′b′c′=a′bc+a′b′c
⇔abc+a′b′c′=a′bc−a′bc+a′b′c−a′b′c⇔abc+a′b′c′=a′bc−a′bc+a′b′c−a′b′c
⇔abc+a′b′c′=0(đpcm)
lỗi ảnh rồi ạ:<