K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2021

Ta có: aa′+b′b=1⇔ab+a′b′a′b=1⇔ab+a′b′=a′b⇔abc+a′b′c=a′bc(1)aa′+b′b=1⇔ab+a′b′a′b=1⇔ab+a′b′=a′b⇔abc+a′b′c=a′bc(1)

Lại có: bb′+c′c=1⇔bc+b′c′b′c=1⇔bc+b′c′=b′c⇔a′bc+a′b′c′=a′b′c(2)bb′+c′c=1⇔bc+b′c′b′c=1⇔bc+b′c′=b′c⇔a′bc+a′b′c′=a′b′c(2)

Từ (1) và (2) => abc+a′b′c+a′bc+a′b′c′=a′bc+a′b′cabc+a′b′c+a′bc+a′b′c′=a′bc+a′b′c

⇔abc+a′b′c′=a′bc−a′bc+a′b′c−a′b′c⇔abc+a′b′c′=a′bc−a′bc+a′b′c−a′b′c

⇔abc+a′b′c′=0(đpcm)

19 tháng 11 2021

lỗi ảnh rồi ạ:<

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2017

Lời giải:

Ta có \(`\left\{\begin{matrix} \frac{a}{a'}+\frac{b'}{b}=1\\ \frac{b}{b'}+\frac{c'}{c}=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} ab+a'b'=a'b\\ bc+b'c'=b'c\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} ab=a'b-a'b'\\ b'c'=b'c-bc\end{matrix}\right.\Rightarrow \left\{\begin{matrix} abc=a'bc-a'b'c\\ a'b'c'=a'b'c-a'bc\end{matrix}\right.\)

\(\Rightarrow abc+a'b'c'=0\)

Do đó ta có đpcm.

26 tháng 10 2019

a) Xét 2 \(\Delta\) \(ABC\)\(A'B'C'\) có:

\(AB=A'B'\left(gt\right)\)

\(\widehat{A}=\widehat{A'}\left(gt\right)\)

\(AC=A'C'\left(gt\right)\)

=> \(\Delta ABC=\Delta A'B'C'\left(c-g-c\right).\)

b) Xét 2 \(\Delta\) \(AMC\)\(A'M'C'\) có:

\(AM=A'M'\left(gt\right)\)

\(\widehat{A}=\widehat{A'}\left(gt\right)\)

\(AC=A'C'\left(gt\right)\)

=> \(\Delta AMC=\Delta A'M'C'\left(c-g-c\right).\)

=> \(\widehat{AMC}=\widehat{A'M'C'}\) (2 góc tương ứng)

c) Ta có:

\(\left\{{}\begin{matrix}A'M'+B'M'=A'B'\\AM+BM=AB\end{matrix}\right.\)

\(AM=A'M'\left(gt\right),AB=A'B'\left(gt\right)\)

=> \(BM=B'M'.\)

d) Vì \(\Delta ABC=\Delta A'B'C'\left(cmt\right)\)

=> \(\widehat{B}=\widehat{B'}\) (2 góc tương ứng)

Xét 2 \(\Delta\) \(MBE\)\(M'B'E'\) có:

\(MB=M'B'\left(cmt\right)\)

\(\widehat{B}=\widehat{B'}\left(cmt\right)\)

\(BE=B'E'\left(gt\right)\)

=> \(\Delta MBE=\Delta M'B'E'\left(c-g-c\right).\)

=> \(ME=M'E'\) (2 cạnh tương ứng) (đpcm).

Chúc bạn học tốt!

23 tháng 11 2022

Xét ΔABC và ΔA'B'C' có

AB=A'B'

AC=A'C'

BC=B'C'

Do đó: ΔABC=ΔA'B'C'

Câu 3: 

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)

=>\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

15 tháng 10 2019

ta có BM=\(\frac{1}{3}\)BC

\(\Rightarrow\)MC=\(\frac{2}{3}\)BC

mà BC=B'C'\(\Rightarrow\)MC=M'C'

Xét 2 tam giác ACM và tam giác A'C'M'

có AC=A'C'(tam giác ABC=tam giác A'B'C')

MC=M'C'

\(\widehat{C}\)=\(\widehat{C'}\)(tam giác ABC=tam giác A'B'C')

\(\Rightarrow\)Tam giác ACM =tam giác A'C'M' (cạnh . góc . cạnh)

\(\Rightarrow\)AM=A'M'(cặp cạnh tương ứng)

1 tháng 4 2019

Vì BC=B'C' nên BM=MC=B'M'=M'C'.

\(\Rightarrow\Delta ABM=\Delta A'B'M'\left(ccc\right);\Delta AMC=\Delta A'M'C'\left(ccc\right)\)

\(\Rightarrow\Delta ABC=\Delta A'B'C'.\)

6 tháng 9 2019

Xét △ABC có:

^A + ^B + ^C = 180o (tổng ba góc của tam giác)

Xét △A'B'C' có:

^A' + ^B' + ^C' = 180o (tổng ba góc của tam giác)

Mà ^A = ^A' (gt)

^B = ^B' (gt)

⇒ ^C = ^C' (đpcm)


A B C A' B' C'

13 tháng 7 2017

Ta có hình vẽ:

A B C A' B' C' M M'

a/ Xét tam giác ABC và tam giác A'B'C' có:

AB = A'B' (GT)

góc A = góc A' (GT)

AC = A'C' (GT)

=> tam giác ABC = tam giác A'B'C'.

b/ Ta có: tam giác ABC = tam giác A'B'C' (cmt)

=> BC = B'C'.

Mà M và M' lần lượt là trung điểm của BC và B'C'

=> CM = C'M'.

c/ Ta có: tam giác ABC = tam giác A'B'C'

Mà AM và A'M' lần lượt là trung tuyến của hai tam giác ABC và A'B'C'

=> AM = A'M'.