Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAOB và ΔA'OC có
OA=OA'
\(\widehat{AOB}=\widehat{A'OC}\)
OB=OC
Do đó: ΔAOB=ΔA'OC
Suy ra: AB=A'C
Xét ΔABC và ΔA'CB có
AB=A'C
BC chung
AC=A'B
Do đó: ΔABC=ΔA'CB
a: Xét ΔAOB và ΔA'OC có
OA=OA'
\(\widehat{AOB}=\widehat{A'OC}\)
OB=OC
Do đó: ΔAOB=ΔA'OC
Suy ra: AB=A'C
Xét ΔABC và ΔA'CB có
AB=A'C
BC chung
AC=A'B
Do đó: ΔABC=ΔA'CB
a) Xét 2 \(\Delta\) \(ABC\) và \(A'B'C'\) có:
\(AB=A'B'\left(gt\right)\)
\(\widehat{A}=\widehat{A'}\left(gt\right)\)
\(AC=A'C'\left(gt\right)\)
=> \(\Delta ABC=\Delta A'B'C'\left(c-g-c\right).\)
b) Xét 2 \(\Delta\) \(AMC\) và \(A'M'C'\) có:
\(AM=A'M'\left(gt\right)\)
\(\widehat{A}=\widehat{A'}\left(gt\right)\)
\(AC=A'C'\left(gt\right)\)
=> \(\Delta AMC=\Delta A'M'C'\left(c-g-c\right).\)
=> \(\widehat{AMC}=\widehat{A'M'C'}\) (2 góc tương ứng)
c) Ta có:
\(\left\{{}\begin{matrix}A'M'+B'M'=A'B'\\AM+BM=AB\end{matrix}\right.\)
Mà \(AM=A'M'\left(gt\right),AB=A'B'\left(gt\right)\)
=> \(BM=B'M'.\)
d) Vì \(\Delta ABC=\Delta A'B'C'\left(cmt\right)\)
=> \(\widehat{B}=\widehat{B'}\) (2 góc tương ứng)
Xét 2 \(\Delta\) \(MBE\) và \(M'B'E'\) có:
\(MB=M'B'\left(cmt\right)\)
\(\widehat{B}=\widehat{B'}\left(cmt\right)\)
\(BE=B'E'\left(gt\right)\)
=> \(\Delta MBE=\Delta M'B'E'\left(c-g-c\right).\)
=> \(ME=M'E'\) (2 cạnh tương ứng) (đpcm).
Chúc bạn học tốt!
1: Xét ΔABC và ΔA'B'C' có
AB=A'B'
\(\widehat{BAC}=\widehat{B'A'C'}\)
AC=A'C'
Do đó: ΔABC=ΔA'B'C'
Suy ra: BC=B'C'
2: Ta có: BC=B'C'
mà BM=BC/2
và B'M'=B'C'/2
nên BM=B'M'
3: Xét ΔABM và ΔA'B'M' có
AB=A'B'
\(\widehat{B}=\widehat{B'}\)
BM=B'M'
Do đó:ΔABM=ΔA'B'M'
Suy ra: AM=A'M'
Xét ΔABA' có
BC là đường trung tuyến
BM=2/3BC
DO đó: M là trọng tâm
=>N là trung điểm của BA'
ta có BM=\(\frac{1}{3}\)BC
\(\Rightarrow\)MC=\(\frac{2}{3}\)BC
mà BC=B'C'\(\Rightarrow\)MC=M'C'
Xét 2 tam giác ACM và tam giác A'C'M'
có AC=A'C'(tam giác ABC=tam giác A'B'C')
MC=M'C'
\(\widehat{C}\)=\(\widehat{C'}\)(tam giác ABC=tam giác A'B'C')
\(\Rightarrow\)Tam giác ACM =tam giác A'C'M' (cạnh . góc . cạnh)
\(\Rightarrow\)AM=A'M'(cặp cạnh tương ứng)