Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(999993^{1999}=999993^{1996}.999993^3=\)
\(=\left(999993^4\right)^{499}.999993^3\)
\(999993^4\) có tận cùng là 1\(\Rightarrow\left(999993^4\right)^{499}\) có tận cùng là 1
\(999993^3\) có tận cùng là 7
\(\Rightarrow999993^{1999}\) có tận cùng là 7
Ta có
\(555557^{1997}=555557^{1996}.555557=\)
\(=\left(555557^4\right)^{499}.555557\)
\(555557^4\) có tận cùng là 1\(\Rightarrow\left(555557^4\right)^{499}\) có tận cùng là 1
\(555557\) có tận cùng là 7
\(\Rightarrow555557^{1997}\) có tận cùng là 7
\(\Rightarrow A\) có tận cùng là 0 \(\Rightarrow A⋮5\)
quá ez, vì số dư 1 của số 9999931999 - số dư 1 của số 5555571997 = dư 0. Mà dư 0 là không dư nên chia hết cho 2 và 5. Cho mình 1 điểm nhé
Ta thấy: 9999931999 - 5555571997 có hiệu tận cùng là 2 vậy số trên ko bao giời chia hết cho 5
a) Vì abcd chia hết cho 4 nên 10c + d chia hết cho 4
Mặt khác 10c + d = 8c + 2c + d
Vì 8c chia hết cho 4 nên 2c + d cũng chia hết cho 4
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
a, 995 - 984 + 973 - 962
= (…9 ) - (…6) + (…3) - (…6)
= 0
Số này có tận cùng bằng 0 nên chia hết cho 2 và 5 tick minh nha
1d)Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Ta có: 9999931999 có chữ số tận cùng là 31999 = (34)499. 33 = 81499.27
Ta có: 9999931999=(74)499.7 =2041499.7 có chữ số tận cùng là 7
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5.
A = a^5 - a = a(a²-1)(a²+1) = a(a-1)(a+1)(a²+1)
* (a-1)a(a+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 6
* Đặt a = 5k + r ( với 0 ≤ r ≤ 4)
nếu r = 0, 1, 4 thì n hoặc (a - 1) hoặc (a + 1) chia hết cho 5
xét r = 2 hoặc 3
a²+1 = (5k+r)² + 1 = 25k²+10k + r²+1 chia hết cho 5 khi r = 2 hoặc r = 3
tóm lại A chia hết cho 5
Vì (6,5) = 1, A chía hết cho 6 và 5 nên A chia hết cho 30
t i c k nha!!!!!!! 45667678978902313243253454365476586587688768765435346
Ta có:A= 9999931999- 5555571997
= 9999931998 . 999993 - 5555571996 . 555557
= ( 9999932)999 . 999993- ( 555552)998 . 555557
= (....9)999 . 999993 - (....9)998 . 555557
= (....9) . 999993 - (....1) . 555557
= (...7) - (...7)
= (...0)
Chữ số tận cùng của A= 0
=> A chia hết cho 5 ( đpcm)
Chúc bạn học tốt nhoa...!
\(\)Ta có :
\(A=999993^{1999}-555557^{1997}\)
\(A=999993^{1998}.999993^1-555557^{1996}.555557^1\)
\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)
\(A=\left(......9\right).999993-\left(....1\right).555557\)
\(A=\left(....7\right)-\left(...7\right)=\left(...0\right)\)
\(\Rightarrow\) Chữ số tận cùng của A là \(0\)
\(\Rightarrow A⋮5\)
~ Chúc bn học tốt ~