K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

gợi ý:

a) nhóm 3 số liên tiếp thành 1 cặp:

A = (3 + 33 + 35) + .....

b) nhóm 4 số liên tiếp thành 1 nhóm

A = (3 + 33 + 35 + 37) + ....

7 tháng 10 2018

ta co

A=3+33+35+...+31991

A=(3+33+35)+(37+39+311)+...+(31987+31989+31991)

A=(3+33+35)+36(3+33+35)+....+31986(3+33+35)

A=273+273.36+...+273.31986

A=273(36+31986)                    Vi\(273⋮13\)

\(\Leftrightarrow A⋮13\)

19 tháng 9

calibudaicho

21 tháng 9 2015

b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)

=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)

=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)

=3+3^2.13+3^5.13+.........+3^58.13

=3.13.(3^2+3^5+....+3^58)

vi tich tren co thua so 13 nen tich do chia het cho 13

=

21 tháng 9 2015

bai1

a) A=(31+32)+(33+34)+...+(359+360)

=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)

=3^1.(1+3)+...+3^59.(1+3)

=3^1.4+....+3^59.4

=4.(3^1+...+3^59)

vi tich tren co thua so 4 nen tich do chia het cho 4

22 tháng 11 2017

làm rồi mình k cho

bài này bạn nào làm sao mình biết mình ra đề rồi tự tính rồi

22 tháng 11 2017

Câu 1:

a, a+5b = (a+b)-6b

Vì \(\hept{\begin{cases}a+b⋮6\\6b⋮6\end{cases}\Rightarrow\left(a+b\right)-6b⋮6\Rightarrow a+5b⋮6}\)

b, a-13b = (a+b) - 12b

Vì \(\hept{\begin{cases}a+b⋮6\\12b⋮6\end{cases}\Rightarrow\left(a+b\right)-12b⋮6\Rightarrow a-13b⋮6}\)

Câu 2:

Ta có: 1028 + 8 = 100...0 (28 c/s 0) + 8 = 100....08 (27 c/s 0)

Vì 1+0+0+...+8 = 9 chia hết cho 9 nên 1028 + 8 chia hết cho 9 (1)

Lại có: 103 chia hết cho 8 => 1028 chia hết cho 8 và 8 chia hết cho 8

Do đó 1028 + 8 chia hết cho 8 (2)

Mà (8,9) = 1 (3)

Từ (1),(2),(3) => đpcm

Câu 3:

x chia 5 dư 1 => x - 1 chia hết cho 5

x chia 3 dư 1 => x - 1 chia hết cho 3

=> x - 1 thuộc BC(5,3)

Ta có 5 = 5 ; 3 = 3

BCNN(5,3) = 5.3 = 15

BC(5,3) = B(15) = {0;15;30;....}

=> x - 1 thuộc {0;15;30;...}

=> x thuộc {1;16;31;....}

11 tháng 12 2017

Câu b, chuyển 3^2010 thành 2^2010 nhé!

10 tháng 9 2018

1)Ta có \(A=12.\left(10a+3b\right)\)( đã sửa 120b thành 120a )

\(a,b\in N\Rightarrow10a+3b\in N\)

Do đó\(12.\left(10a+3b\right)⋮12\)

Vậy\(A⋮12\)

2)

a) Ta có \(2a+7b=2a+b+6b=\left(2a+b\right)+6b\)chia hết cho 3

\(6b⋮3\)\(\left(2a+b\right)+6b⋮3\)nên \(2a+b⋮3\)\(A+B⋮C\)\(B⋮C\)\(\Rightarrow A⋮C\))

\(2a+b⋮3\Rightarrow2.\left(2a+b\right)⋮3\)\(\Rightarrow4a+2b⋮3\)

b) Ta có \(a+b⋮2\)lại có \(2b⋮2\)

nên \(\left(a+b\right)+2b⋮2\)hay\(a+3b⋮2\)

c) Ta có \(12a⋮12\);\(36b⋮12\)

nên \(12a+36b⋮12\)

Mà \(12a+36b=\left(11a+2b\right)+\left(a+34b\right)\)

nên \(\left(11a+2b\right)+\left(a+34b\right)⋮12\)

\(11a+2b⋮12\)\(\Rightarrow a+34b⋮12\)\(A+B⋮C\)\(B⋮C\)\(\Rightarrow A⋮C\))

d) 1\(12b⋮12\)là điều hiển nhiên nên thiếu giả thiết để chứng minh

P/S Sai đề rất nhiều, mong bạn trước khi đăng hãy kiểm tra lại đề hoặc xem thử có bị cô troll hay không

9 tháng 9 2018

12a chứ ko phải 120a đâu

11 tháng 9 2018

1/ A=12(10a+3b) chia heets cho 12

2/

a/ 2a+7b Chia hết cho 3 => 2(2a+7b)=4a+14b=4a+2b+12b Chia hết cho 3 mà 12 b Chia hết cho 3 nên 4a+2b cũng chia hết cho 3

b/ a+b chia hết cho 2 nên a+b chẵn mà a+3b=(a+b)+2b. Do a+b chẵn và 2b chẵn => a+3b chẵn => a+3b chia hết cho 2

29 tháng 10 2023

a) \(A=1+2+2^2+...+2^{41}\)

\(2A=2+2^2+...+2^{42}\)

\(2A-A=2+2^2+...+2^{42}-1-2-2^2-...-2^{41}\)

\(A=2^{42}-1\)

b) \(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{40}+2^{41}\right)\)

\(A=3+2^2\cdot3+...+2^{40}\cdot3\)

\(A=3\cdot\left(1+2^2+...+2^{40}\right)\)

Vậy A ⋮ 3

__________

\(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2+2^2\right)+...+\left(2^{39}+2^{40}+2^{41}\right)\)

\(A=7+...+2^{39}\cdot7\)

\(A=7\cdot\left(1+..+2^{39}\right)\)

Vậy: A ⋮ 7

c) \(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2^2\right)+\left(2+2^3\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)

\(A=5+2\cdot5+...+2^{38}\cdot5+2^{39}\cdot5\)

\(A=5\cdot\left(1+2+...+2^{39}\right)\)

A ⋮ 5 nên số dư của A chia cho 5 là 0 

29 tháng 10 2023

Xem lại phần c dòng này nhé a

\(A=\left(1+2^2\right)+\left(2^2+2^4\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)

có 2 số \(2^2\)?