Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)1/2 . [-3]/4 . [-5]/8 . [-8]/9=[1. (-3).(-5).(-8)]/[2.4.8.3.3]=[-5]/[2.4.3]=[-5]/24`
`b)(2/[1.3]+2/[3.5]+2/[5.7]).([10.13]/3-[2^2]/3-[5^3]/3)`
`=(1-1/3+1/3-1/5+1/5-1/7).[10.13-2^2-5^3]/3`
`=(1-1/7).[130-4-125]/3`
`=6/7 . 1/3 = 2/7`
____________________________________________________
`8/9+1/9 . 2/9+1/9 . 7/9`
`=8/9+1/9.(2/9+7/9)`
`=8/9+1/9 . 9/9`
`=8/9+1/9=9/9=1`
a) \(\dfrac{1}{2}\cdot\dfrac{-3}{4}\cdot\dfrac{-5}{8}\cdot\dfrac{-8}{9}\)
\(=\dfrac{1\cdot\left(-3\right)\cdot\left(-5\right)\cdot\left(-8\right)}{2\cdot4\cdot8\cdot9}\)
\(=-\dfrac{5}{24}\)
b) \(\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}\right)\cdot\left(\dfrac{10\cdot13}{3}-\dfrac{2^2}{3}-\dfrac{5^3}{3}\right)\)
\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}\right)\cdot\left(\dfrac{130}{3}-\dfrac{4}{3}-\dfrac{125}{3}\right)\)
\(=\left(1-\dfrac{1}{7}\right)\cdot\dfrac{1}{3}\)
\(=\dfrac{6}{7}\cdot\dfrac{1}{3}\)
\(=\dfrac{2}{7}\)
\(\dfrac{8}{9}+\dfrac{1}{9}\cdot\dfrac{2}{9}+\dfrac{1}{9}\cdot\dfrac{7}{9}\)
\(=\dfrac{8}{9}+\dfrac{2}{81}+\dfrac{7}{81}\)
\(=\dfrac{72}{81}+\dfrac{2}{81}+\dfrac{7}{81}\)
\(=1\)
a)
\(A=\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{99.101}{100.100}\)
\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)
\(=\dfrac{1}{100}.\dfrac{101}{2}\)
\(=\dfrac{101}{200}\)
1: \(S=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}=\dfrac{101}{2}\)
2: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2006}{2007}=\dfrac{1}{2007}\)
Biến đổi thừa số tổng quát: \(1+\dfrac{1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{\left(k-1\right)\left(k+1\right)+1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{k^2}{\left(k-1\right)\left(k+1\right)}\).
Do đó \(1+\dfrac{1}{1.3}=\dfrac{2^2}{1.3}\), \(1+\dfrac{1}{2.4}=\dfrac{3^2}{2.4}\), \(1+\dfrac{1}{3.5}=\dfrac{4^2}{3.5}\),..., \(1+\dfrac{1}{2018.2020}=\dfrac{2019^2}{2018.2020}\), \(1+\dfrac{1}{2019.2021}=\dfrac{2020^2}{2019.2021}\). Từ đó suy ra \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)\)
\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}.\dfrac{6^2}{5.7}...\dfrac{2019^2}{2018.2020}.\dfrac{2020^2}{2019.2021}\)
\(=\dfrac{2.2020}{2021}=\dfrac{4040}{2021}\)
Kiểm tra lại đề xem thừa số cuối có đúng quy luật của dãy không.
\(D=\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)=\dfrac{4}{1.3}.\dfrac{9}{2.4}...\dfrac{2019.2021+1}{2019.2021}=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}...\dfrac{2020.2020}{2019.2021}=\left(\dfrac{2}{1}.\dfrac{3}{2}...\dfrac{2020}{2019}\right).\left(\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2020}{2021}\right)=2020.\dfrac{2}{2021}=\dfrac{4040}{2021}\)