Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này đơn giản mà bạn
Giả sử rằng trong các số \(a_1;a_2;...;a_n\)không có số nào lớn hơn hoặc bằng a khi đó \(a_1+a_2+...+a_n< a+a+...+a\)(n số hạng a )
\(\Rightarrow a_1+a_2+a_3+...+a_n< a\cdot n\left(1\right)\)
Mặt khác theo như giả thuyết ta có \(a=\frac{a_1+a_2+...+a_n}{n}\Rightarrow a\cdot n=a_1+a_2+...+a_n\left(2\right)\)
Ta thấy điều (1) và (2) trái ngược nhau nên điều giải sử lúc ban đầu là sai.
Vậy trong các số trên sẽ có ít nhất một số lớn hơn hoặc bằng a
\(\Delta'=4-m+1=5-m\ge0\Rightarrow m\le5\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)
a/ \(x_1^3+x_2^3=40\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-40=0\)
\(\Leftrightarrow4^3-12\left(m-1\right)-40=0\Rightarrow m=3\)
b/ \(P=\left(x_1x_2\right)^2+5\left(x_1+x_2\right)^2-10x_1x_2+4\)
\(=\left(m-1\right)^2+5.4^2-10\left(m-1\right)+4\)
\(=m^2-12m+95\)
\(=\left(7-m\right)\left(5-m\right)+60\)
Do \(m\le5\Rightarrow\left\{{}\begin{matrix}7-m>0\\5-m\ge0\end{matrix}\right.\) \(\Rightarrow\left(7-m\right)\left(5-m\right)\ge0\)
\(\Rightarrow P\ge60\Rightarrow P_{min}=60\) khi \(m=5\)
\(5\left(x^2_1+x_2^2\right)=5\left(x_1^2+x_2^2+2x_1x_2-2x_1x_2\right)=5\left(x_1+x_2\right)^2-10x_1x_2\)
Giải:
Phương trình \(x^4+2mx^2+4=0\left(1\right)\)
Đặt \(t=x^2\). Phương trình \(\left(1\right)\) trở thành:
\(t^2+2mt+4=0\left(2\right)\)
Phương trình \(\left(1\right)\) có \(4\) nghiệm phân biệt
\(\Leftrightarrow\) Phương trình \(\left(2\right)\) có \(2\) nghiệm dương phân biệt \(t_1,t_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-4>0\\t_1+t_2=-2m>0\\t_1.t_2=4>0\end{matrix}\right.\) \(\Leftrightarrow m< -2\)
Khi đó phương trình \(\left(1\right)\) có \(4\) nghiệm là: \(\left\{{}\begin{matrix}x_{1;2}=\pm\sqrt{t_1}\\x_{3;4}=\pm\sqrt{t_2}\end{matrix}\right.\)
Và \(x_1^4+x_2^4+x_3^4+x_4^4=2\left(t_1^2+t_2^2\right)\)
\(=2\left[\left(t_1+t_2\right)^2-2t_1.t_2\right]\)
\(=2\left[\left(-2m\right)^2-2.4\right]=8m^2-16\)
Từ giả thiết ta có:
\(8m^2-16=32\Leftrightarrow m=-\sqrt{6};m=\sqrt{6}\) (loại)
Vậy giá trị cần tìm của \(m\) là: \(m=-\sqrt{6}\)
RIMIKIO KANKA có cần nhất thiết phải 2 người đó k vậy bạn , mik biết câu này nhưng k chắc là đúng hay k ! nhưng mik sẽ làm hết sức , mong bạn tick cho mik nhé !!!