Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H1, H2, H3 lần lượt là trực tâm ΔABC1, ΔBCA1, ΔCAB1
Ta có : \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC_1}=\overrightarrow{OH}_1\left(1\right)\)
\(\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OA}_1=\overrightarrow{OH}_2\left(2\right)\)
\(\overrightarrow{OC}+\overrightarrow{OA}+\overrightarrow{OB}_1=\overrightarrow{OH}_3\left(3\right)\)
Trừ theo vế (1) , (2) ta có :
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC'}+\overrightarrow{BO}+\overrightarrow{CO}+\overrightarrow{A_1O}=\overrightarrow{OH_1}+\overrightarrow{H_2O}\)
\(\Leftrightarrow\overrightarrow{A_1A}+\overrightarrow{CC_1}=\overrightarrow{H_2H_1}\)
TƯƠNG TỰ TRỪ THEO VẾ (2) , (3) ta được :
\(\overrightarrow{B_1B}+\overrightarrow{A_1A}=\overrightarrow{H_3H_2}\)
Lại có: AA1//BB1//CC1 (gt)
\(\Rightarrow\)vt AA1, vtA1A, vt B1B, CC1 cùng phương
\(\RightarrowĐPCM\)
A B C B' C' I O I K L J T a
Gọi K và L lần lượt là tâm bàng tiếp góc C và góc B của \(\Delta\)ABC. Khi đó dễ thấy:
Tâm nội tiếp I của \(\Delta\)ABC chính là trực tâm của \(\Delta\)KIaL ; O là tâm đường tròn Euler của \(\Delta\)KIaL
Từ đó nếu ta gọi J và T thứ tự là tâm ngoại tiếp \(\Delta\)KIaL và KIL thì I và J đối xứng nhau qua O
Đồng thời T và J đối xứng nhau qua KL; TJ = IIa; TJ // IIa . Suy ra T và Ia đối xứng nhau qua O (1)
Ta thấy tứ giác AICL nội tiếp nên PB'/(T) = B'I.B'L = B'A.B'C = PB'/(O)
Suy ra B' nằm trên trục đẳng phương của (O) và (T). Tương tự với điểm C'.
Do đó B'C' là trục đẳng phương của (O) và (T) hay B'C' vuông góc với OT (2)
Từ (1) và (2) suy ra OIa vuông góc với B'C' (đpcm).
Bài 1:
H1;H2 lần lượt là trực tâm tam giác OAB, OCD và \(\widehat{AOB}=\widehat{COD}\)(đối đỉnh)
=> \(\frac{OH_1}{OH_2}=\frac{AB}{CD}\)
Gọi M,N,K lần lượt là trung điểm của các đoạn thẳng AD, BC, BD
Vì G1;G2 lần lượt là trọng tâm của các tam giác OAD; OBC. Nên \(\frac{OG_1}{OM}=\frac{2}{3};\frac{OG_2}{ON}=\frac{2}{3}\)
\(\Delta\)OMN có: \(\frac{OG_1}{OM}=\frac{OG_2}{ON}\left(=\frac{2}{3}\right)\)=> G1G2 // MN và \(G_1G_2=\frac{2}{3}MN\)
\(OH_1\perp MK,OH_2\perp NK,MK=\frac{AB}{2},NK=\frac{CD}{2}\)
Do đó: \(\widehat{H_1OH_2}=\widehat{MKN},\frac{OH_1}{MK}=\frac{OH_2}{NK}\). Nên \(\Delta\)OH1H2 đồng dạng với \(\Delta\)KMN (cgc)
=> \(H_1H_2\perp MN\)Mà G1G2 // MN
Nên \(H_1H_2\perp G_1G_2\)=> \(S=\frac{1}{2}H_1H_2\cdot G_1G_2\)
Áp dụng BĐT Cosi cho 2 số dương ta có:
\(S=\frac{1}{2}H_1H_2\cdot G_1G_2=\frac{3G_1G_2\cdot H_1H_2}{6}\le\frac{\left(3G_1G_2+H_1H_2\right)^2}{24}\)
Dấu "=" <=> \(3G_1G_2=H_1H_2\Leftrightarrow OH_1=AB\)và \(OH_2=CD\)
\(\Leftrightarrow\widehat{AOB}=\widehat{COD}=45^o\)
Bài 2: *có nhiều cách làm bài này, mỗi cách có 1 hình khác nhau, đang lỗi nên không vẽ được hình*
Cách 1: Ta có: \(\widehat{BAC}=90^o\)(Góc nội tiếp chắn nửa đường tròn)
Đặt BH=x, ta có HC=HB-BH=2R-x
\(\Delta\)ABC vuông tại A, AH là đường cao
=> AH2=BH.HC. Nên \(AH=\sqrt{x\left(2R-x\right)}\)
Áp dụng BĐT Cosi cho 2 số dương, ta có: AH+BH=\(\sqrt{x\left(2R-x\right)+x}=\frac{1}{\sqrt{3+2\sqrt{2}}}\sqrt{x\left[\left(3+2\sqrt{2}\right)\left(2R-x\right)\right]}+x\)
\(\le\frac{1}{\sqrt{\left(\sqrt{2}+1\right)^2}}\cdot\frac{a+\left(3+2\sqrt{2}\right)\left(2R-x\right)}{2}+x\)\(=\frac{1}{\sqrt{2}+1}\left[\frac{x}{2}\left(\sqrt{2}+1\right)^2\cdot R-\frac{\left(\sqrt{2}+1\right)^2\cdot x}{2}\right]+x\)
\(=\frac{\sqrt{2}-1}{2}\cdot x+\left(\sqrt{2}+1\right)R-\frac{\sqrt{2}+1}{2}x+x=\left(\sqrt{2}+1\right)R\)
Ta có AB+AH \(\le\left(\sqrt{2}+1\right)R\)không đổi
Dấu "=" xảy ra <=> \(x=\left(3+2\sqrt{2}\right)\left(2R-x\right)\)
\(\Leftrightarrow x=\frac{2+\sqrt{2}}{2}R\)
\(\Leftrightarrow\widehat{AOC}=45^o\)
Cách 2: Gọi M là điểm trên nửa đường tròn (O) sao cho \(\widehat{COM}=45^o\) và gọi N là giao của nửa đường tròn (O) tại M với BC
Ta có: M,N cố định; \(\widehat{ONM}=45^o\), BN không đổi
Điểm A trên đường tròn (O)
Do đó tia NA nằm giữa 2 tia NB và NM
\(\Rightarrow\widehat{ANH}\le\widehat{ONM}=45^o\). Mà \(\widehat{ANH}+\widehat{HAN}=90^o\), Nên \(\widehat{HAN}\ge45^o\)
=> \(\widehat{ANH}\le\widehat{HAN},\)\(\Delta\)AHN có: \(\widehat{ANH}\le\widehat{HAN}\Rightarrow AH\le HN\)
Do đó: AH+BH \(\le\)HN+BH=BN, không đổi
Dấu "=" xảy ra <=> A = M
Vậy khi A trên nửa đường tròn (O) sao cho \(\widehat{COA}=45^o\) thì AH+BH lớn nhất
Cho các số 0 < a1 < a2 < a3 < ... < a15 . Chứng minh rằng a1 + a2 + a3 + .... + a15 / a5 + a10 + a15