K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Đặt }\left(2n-5,3n+8\right)=d\)

\(\Rightarrow\hept{\begin{cases}\left(2n-5\right)⋮d\\\left(3n+8\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n-5\right)⋮d\\2\left(3n+8\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(6n-15\right)⋮d\\\left(6n+16\right)⋮d\end{cases}}\)

\(\Rightarrow\left(6n+16\right)-\left(6n+15\right)=1⋮d\)

\(\Rightarrow d=1\Leftrightarrow\left(2n-5,3n+8\right)=1\)

14 tháng 8 2018

Giả sử UWCLN của 2 số này là d

=> 2n + 5 chia hết cho d và 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d và 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d và 6n + 14 chia hết cho d 

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà ước của 1 chỉ có thể là 1 => d = 1

tức là ước chung lớn nhất 2 số này là 1 

=> (2n+5;3n+7)=1

16 tháng 12 2017

gọi UCLN(2n+1,2n+3)=k

Ta có:

2n+1\(⋮\)k

2n+3\(⋮\)k

=>(2n+3)-(2n+1)\(⋮\)k

mik đang bận nên tẹp nữa làm tiếp

16 tháng 12 2017

gọi d là ƯCLN ( 2n + 1 , 2n + 3 )

\(\Rightarrow\)2n + 1 \(⋮\)d ; 2n + 3 \(⋮\)d

\(\Rightarrow\) ( 2n + 3 ) - ( 2n + 1 ) \(⋮\)d

\(\Rightarrow\)\(⋮\)d

Mà 2n + 1 là số lẻ \(\Rightarrow\)d cũng là số lẻ \(\Rightarrow\)d = 1

Vậy ƯCLN ( 2n + 1 , 2n + 3 ) = 1

10 tháng 11 2017

a)Gọi ƯCLN(2n+1,2n+3) = d     (d thuộc N*)

=>2n+1 chia hết cho d và 2n+3 chia hết cho d

=>(2n+3)-(2n+1) chia hết cho d

=>2 chia hết cho d

=>d thuộc Ư(2)

Ta có: Ư(2)={1;2}

Vì 2n+1 và 2n+3 là số lẻ nên d không thể bằng 2

=>d=1

Vậy ƯCLN(2n+1,2n+3) = 1             (đpcm)

b)Gọi ƯCLN(2n+5,3n+7) = d         (d thuộc N*)

=>2n+5 chia hết cho d và 3n+7 chia hết cho d

=>6n+15 chia hết cho d và 6n+14 chia hết cho d 

=>(6n+15)-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d thuộc Ư(1) =>d=1

Vậy ƯCLN(2n+5,3n+7) = 1             (đpcm)

14 tháng 11 2017

a) Đặt: ƯCLN(2n+1,2n+3) = d

Ta có: 2n+1 \(⋮\)d và 2n+3 \(⋮\)d

\(\Rightarrow\)(2n+3) - (2n+1) \(⋮\)d

\(\Leftrightarrow\)2n+3 - 2n-1 \(⋮\)d

\(\Leftrightarrow\)2\(⋮\)d

Vì 2n+3 ko chia hết cho 2

Nên 1\(⋮\)d

\(\Leftrightarrow\)d=1

Vậy ƯCLN( 2n+1,2n+3) = 1(đpcm)

b) Đặt ƯCLN( 2n+5,3n+7 ) = d

Ta có: 2n+5 \(⋮\)\(\Leftrightarrow\)3(2n+5) \(⋮\)d

                             \(\Leftrightarrow\)6n+15 \(⋮\)d

            3n+7\(⋮\)\(\Leftrightarrow\)2(3n+7) \(⋮\)d

                             \(\Leftrightarrow\)6n+14 \(⋮\)d

\(\Rightarrow\)(6n+15) - (6n+14)\(⋮\)d

\(\Leftrightarrow\)6n+15 - 6n - 14\(⋮\)d

\(\Leftrightarrow\)1\(⋮\)d

\(\Leftrightarrow\)d = 1

Vậy ƯCLN(2n+5,3n+7) = 1(đpcm)

Kb vs mk nha

5 tháng 1 2016

Đặt d = UCLN(2n + 5, 3n + 7)
2n + 5 chia hết cho d ==> 3(2n + 5) = 6n + 15 chia hết cho d.
3n + 7 chia hết cho d ==> 2(3n + 7) = 6n + 16 chia hết cho d.
Suy ra (6n + 16) - (6n + 15) = 1 chia hết cho d ==> d = 1.

5 tháng 1 2016

1

tich nha tich nha 

20 tháng 10 2019

( 2n + 2 ).( 2n + 4 ) chia hết cho 8

Chứng tỏ rằng vì :

Ta thấy n phải là số chẵn mà 2n + 2 đã là số chẵn 

2n + 4 đã là số chẵn vì \(⋮\) cho 2

Nên chứng tỏ:

\(n+\left(2.4\right)⋮8\)

=> n + 8 chia hết cho 8

=> ( 2n + 2 ).( 2n + 4 ) chia hết cho 8 

20 tháng 10 2019

Ta có : ( 2n + 2 ).( 2n + 4 )   

\(\Rightarrow\) 4n2 + 4n + 8n + 8 

Vì 8n \(⋮\)8 ; 8\(⋮\)8 ; 4n thuộc ước của 8

\(\Rightarrow\)4n2 + 4n + 8n + 8 \(⋮\)8

\(\Rightarrow\)( 2n + 2 )( 2n + 4 ) chia hết cho 8 

17 tháng 11 2017

ta lập biểu thưc vfhgjhkjggj

fhfhgjh;hjghg-gjgjh=ggrutrutiyỳjkjfgf[ỵt[tjrgtgfugeidgưeuđewvd76e

a.b.c.d.e.f.g=100

fsjshssiusksuusmsumsú,súksúksúlsusúkúlsú=shsjsk-sssskảy,hehhhugeywhoewugrfteocjnr;djfctta  

ta lập luôn 1 biểu thức ậmkrgkfhrhfytf7eỷ6ềwỷwt9fuềe9re6dteudfudỷ4hd94

19 tháng 6 2015

a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)

=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                                           \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)

=> A là số chính phương

b) B có số số hạng là : (2n-2):2+1= n (số)

=> \(B=\frac{\left(2n+2\right).n}{2}=\frac{2\left(n+1\right).n}{2}=\left(n+1\right).n\)

=> B không là số chính phương.

3 tháng 12 2015

A có số số hạng là:

(2n+1-1):2+1=n+1(số)

=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                       \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)  

=>A là số chính phương

20 tháng 10 2015

1) Coi a< b

ƯCLN (a;b) = 56 . Đặt a = 56m; b = 56n (m; n nguyên tố cùng nhau và m < n)

a + b = 224 => 56m + 56n = 224 => m + n = 4 => m = 1; n =3 => a = 56 và b = 168

Vậy...

2) Gọi d = ƯCLN(2n + 2; 2n+ 3) 

=> 2n + 1 chia hết cho d; 2n +3  chia hết cho d

=> 2n + 3 - (2n + 1) chia hết cho d => 2 chia hết cho d => d = 1 hoặc d = 2

Mà 2n + 1 lẻ nên 2n + 1 không chia hết cho 2 => d = 1

Vậy...

3) Áp dụng công thức ƯCLN(a;b) . BCNN(a;b) = a.b => ƯCLN(a;b) = 2400 : 120 = 20

Đặt a = 20m; b= 20n( m; n nguyên tố cùng nhau; coi m< n)

a.b = 20m.20n = 400mn = 2400 => m.n = 6 = 1.6 = 2.3

+) m = 1; n = 6 => a = 20; b = 120

+) m = 2; n = 3 => a = 40; b = 60

Vây,...

4) a chia hết cho b nên BCNN(a;b) = a = 18

=> b \(\in\)Ư(18) = {1;2;3;6;9;18}

vậy,,,

12 tháng 11 2016

khó quá không làm được